Advertisement

Amino Acids

, Volume 43, Issue 5, pp 1811–1821 | Cite as

d-Amino acids in the brain and mutant rodents lacking d-amino-acid oxidase activity

  • Masahiro Yamanaka
  • Yurika Miyoshi
  • Hiroko Ohide
  • Kenji Hamase
  • Ryuichi KonnoEmail author
Review Article

Abstract

d-Amino acids are stereoisomers of l-amino acids. They are often called unnatural amino acids, but several d-amino acids have been found in mammalian brains. Among them, d-serine is abundant in the forebrain and functions as a co-agonist of NMDA receptors to enhance neurotransmission. d-Amino-acid oxidase (DAO), which degrades neutral and basic d-amino acids, is mainly present in the hindbrain. DAO catabolizes d-serine and, therefore, modulates neurotransmission. In the brains of mutant mice and rats lacking DAO activity, the amounts of d-serine and other d-amino acids are markedly increased. Mutant mice manifested behavioral changes characteristic of altered NMDA receptor activity, likely due to increased levels of d-serine. d-Serine and DAO have been demonstrated to play important roles in cerebellar development and synaptic plasticity. They have also implicated in amyotrophic lateral sclerosis and pain response. There have also been several lines of evidence correlating DAO with schizophrenia. Taken together, the experiments indicate that d-amino acids and DAO have pivotal functions in the central nervous system.

Keywords

d-Amino-acid oxidase d-Serine Mouse Rat NMDA receptor Neuropsychological diseases 

Abbreviations

ACTH

Adrenocorticotropic hormone

ALS

Amyotrophic lateral sclerosis

CBIO

5-Chloro-benzo[d]isoxazol-3-ol

CNS

Central nervous system

DAO

d-Amino-acid oxidase

EPSC

Excitatory postsynaptic current

LTD

Long-term depression

LTP

Long-term potentiation

MK-801

(+)-10,11-Dihydro-5-methyl-5H-dibenzo[a,d]cyclohepten-5,10-imine

NMDA

N-Methyl-d-aspartate

PCP

Phencyclidine

SD

Sprague–Dawley

SR

Serine racemase

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adage T, Trillat AC, Quattropani A, Perrin D, Cavarec L, Shaw J, Guerassimenko O, Giachetti C, Gréco B, Chumakov I et al (2008) In vitro and in vivo pharmacological profile of AS057278, a selective d-amino acid oxidase inhibitor with potential anti-psychotic properties. Eur Neuropsychopharmacol 18:200–214PubMedGoogle Scholar
  2. Almond SL, Fradley RL, Armstrong EJ, Heavens RB, Rutter AR, Newman RJ, Chiu CS, Konno R, Hutson PH, Brandon NJ (2006) Behavioral and biochemical characterization of a mutant mouse strain lacking d-amino acid oxidase activity and its implications for schizophrenia. Mol Cell Neurosci 32:324–334PubMedGoogle Scholar
  3. Bass NJ, Datta SR, McQuillin A, Puri V, Choudhury K, Thirumalai S, Lawrence J, Quested D, Pimm J, Curtis D et al (2009) Evidence for the association of the DAOA (G72) gene with schizophrenia and bipolar disorder but not for the association of the DAO gene with schizophrenia. Behav Brain Funct 5:28PubMedGoogle Scholar
  4. Basu AC, Tsai GE, Ma CL, Ehmsen JT, Mustafa AK, Han L, Jiang ZI, Benneyworth MA, Froimowitz MP, Lange N et al (2009) Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol Psychiatry 14:719–727PubMedGoogle Scholar
  5. Bendikov I, Nadri C, Amar S, Panizzutti R, De Miranda J, Wolosker H, Agam G (2007) A CSF and postmortem brain study of d-serine metabolic parameters in schizophrenia. Schizophr Res 90:41–51PubMedGoogle Scholar
  6. Benneyworth MA, Li Y, Basu AC, Bolshakov VY, Coyle JT (2012) Cell selective conditional null mutations of serine racemase demonstrate a predominate localization in cortical glutamatergic neurons. Cell Mol Neurobiol 32:613–624PubMedGoogle Scholar
  7. Burnet PWJ, Eastwood SL, Bristow GC, Godlewska BR, Sikka P, Walker M, Harrison PJ (2008) d-Amino acid oxidase activity and expression are increased in schizophrenia. Mol Psychiatry 13:658–660PubMedGoogle Scholar
  8. Burnet PWJ, Anderson PN, Chen L, Nikiforova N, Harrison PJ, Wood MJ (2011) d-Amino acid oxidase knockdown in the mouse cerebellum reduces NR2A mRNA. Mol Cell Neurosci 46:167–175PubMedGoogle Scholar
  9. Carone FA, Ganote CE (1975) d-Serine nephrotoxicity. The nature of proteinuria, glucosuria, and aminoaciduria in acute tubular necrosis. Arch Pathol 99:658–662PubMedGoogle Scholar
  10. Chen XL, Li XY, Qian SB, Wang YC, Zhang PZ, Zhou XJ, Wang YX (2012) Down-regulation of spinal d-amino acid oxidase expression blocks formalin-induced tonic pain. Biochem Biophys Res Commun 421:501–507Google Scholar
  11. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P et al (2002) Genetic and physiological data implicating the new human gene G72 and the gene for d-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 99:13675–13680PubMedGoogle Scholar
  12. Corvin A, McGhee KA, Murphy K, Donohoe G, Nangle JM, Schwaiger S, Kenny N, Clarke S, Meagher D, Quinn J et al (2007) Evidence for association and epistasis at the DAOA/G30 and d-amino acid oxidase loci in an Irish schizophrenia sample. Am J Med Genet B Neuropsychiatr Genet 144:949–953Google Scholar
  13. D’Aniello A (2007) d-Aspartic acid: an endogenous amino acid with an important neuroendocrine role. Brain Res Rev 53:215–234PubMedGoogle Scholar
  14. D’Aniello S, Somorjai I, Garcia-Fernàndez J, Topo E, D’Aniello A (2011) d-Aspartic acid is a novel endogenous neurotransmitter. FASEB J 25:1014–1027PubMedGoogle Scholar
  15. Duffy S, Labrie V, Roder JC (2008) d-Serine augments NMDA-NR2B receptor-dependent hippocampal long-term depression and spatial reversal learning. Neuropsychopharmacology 33:1004–1018PubMedGoogle Scholar
  16. Dunlop DS, Neidle A, McHale D, Dunlop DM, Lajtha A (1986) The presence of free d-aspartic acid in rodents and man. Biochem Biophys Res Commun 141:27–32PubMedGoogle Scholar
  17. Errico F, Pirro MT, Affuso A, Spinelli P, De Felice M, D’Aniello A, Di Lauro R (2006) A physiological mechanism to regulate d-aspartic acid and NMDA levels in mammals revealed by d-aspartate oxidase deficient mice. Gene 374:50–57PubMedGoogle Scholar
  18. Etoh S, Hamase K, Morikawa A, Ohgusu T, Zaitsu K (2009) Enantioselective visualization of d-alanine in rat anterior pituitary gland: localization to ACTH-secreting cells. Anal Bioanal Chem 393:217–223PubMedGoogle Scholar
  19. Fagg GE, Matus A (1984) Selective association of N-methyl aspartate and quisqualate types of l-glutamate receptor with brain postsynaptic densities. Proc Natl Acad Sci USA 81:6876–6880PubMedGoogle Scholar
  20. Ferraris DV, Tsukamoto T (2011) Recent advances in the discovery of d-amino acid oxidase inhibitors and their therapeutic utility in schizophrenia. Curr Pharm Des 17:103–111PubMedGoogle Scholar
  21. Ferraris D, Duvall B, Ko YS, Thomas AG, Rojas C, Majer P, Hashimoto K, Tsukamoto T (2008) Synthesis and biological evaluation of d-amino acid oxidase inhibitors. J Med Chem 51:3357–3359PubMedGoogle Scholar
  22. Fossat P, Turpin FR, Sacchi S, Dulong J, Shi T, Rivet J-M, Sweedler JV, Pollegioni L, Millan MJ, Oliet SHR, Mothet J-P (2012) Glial d-serine gates NMDA receptors at excitatory synapses in prefrontal cortex. Cereb Cortex 22:595–606PubMedGoogle Scholar
  23. Frattini LF, Piubelli L, Sacchi S, Molla G, Pollegioni L (2011) Is rat an appropriate animal model to study the involvement of d-serine catabolism in schizophrenia? Insights from characterization of d-amino acid oxidase. FEBS J 278:4362–4373PubMedGoogle Scholar
  24. Fuchs SA, De Barse MMJ, Scheepers FE, Cahn W, Dorland L, de Sain-van der Velden MG, Klomp LWJ, Berger R, Kahn RS, de Koning TJ (2008) Cerebrospinal fluid d-serine and glycine concentrations are unaltered and unaffected by olanzapine therapy in male schizophrenic patients. Eur Neuropsychopharmacol 18:333–338PubMedGoogle Scholar
  25. Gaunt GL, de Duve C (1976) Subcellular distribution of d-amino acid oxidase and catalase in rat brain. J Neurochem 26:749–759PubMedGoogle Scholar
  26. Gong N, Gao ZY, Wang YC, Li XY, Huang JL, Hashimoto K, Wang YX (2011) A series of d-amino acid oxidase inhibitors specifically prevents and reverses formalin-induced tonic pain in rats. J Pharmacol Exp Ther 336:282–293PubMedGoogle Scholar
  27. Gong N, Wang YC, Wang HL, Ma AN, Hashimoto K, Wang YX (2012) Interactions of the potent d-amino acid oxidase inhibitor CBIO with morphine in pain and tolerance to analgesia. Neuropharmacology 63:460–468PubMedGoogle Scholar
  28. Habl G, Zink M, Petroianu G, Bauer M, Schneider-Axmann T, von Wilmsdorff M, Falkai P, Henn FA, Schmitt A (2009) Increased d-amino acid oxidase expression in the bilateral hippocampal CA4 of schizophrenic patients: a post-mortem study. J Neural Transm 116:1657–1665PubMedGoogle Scholar
  29. Hamase K, Homma H, Takigawa Y, Fukushima T, Santa T, Imai K (1997) Regional distribution and postnatal changes of d-amino acids in rat brain. Biochim Biophys Acta 1334:214–222PubMedGoogle Scholar
  30. Hamase K, Inoue T, Morikawa A, Konno R, Zaitsu K (2001) Determination of free d-proline and d-leucine in the brains of mutant mice lacking d-amino acid oxidase activity. Anal Biochem 298:253–258PubMedGoogle Scholar
  31. Hamase K, Konno R, Morikawa A, Zaitsu K (2005) Sensitive determination of d-amino acids in mammals and the effect of d-amino-acid oxidase activity on their amounts. Biol Pharm Bull 28:1578–1584PubMedGoogle Scholar
  32. Hamase K, Nagayasu R, Morikawa A, Konno R, Zaitsu K (2006a) Sensitive high-performance liquid chromatographic assay for d-amino-acid oxidase activity in mammalian tissues using a fluorescent non-natural substrate, 5-fluoro-d-tryptophan. J Chromatogr A 1106:159–164PubMedGoogle Scholar
  33. Hamase K, Takagi S, Morikawa A, Konno R, Niwa A, Zaitsu K (2006b) Presence and origin of large amounts of d-proline in the urine of mutant mice lacking d-amino acid oxidase activity. Anal Bioanal Chem 386:705–711PubMedGoogle Scholar
  34. Hamase K, Morikawa A, Etoh S, Tojo Y, Miyoshi Y, Zaitsu K (2009) Analysis of small amounts of d-amino acids and the study of their physiological functions in mammals. Anal Sci 25:961–968PubMedGoogle Scholar
  35. Hashimoto A, Nishikawa T, Hayashi T, Fujii N, Harada K, Oka T, Takahashi K (1992) The presence of free d-serine in rat brain. FEBS Lett 296:33–36PubMedGoogle Scholar
  36. Hashimoto A, Kumashiro S, Nishikawa T, Oka T, Takahashi K, Mito T, Takashima S, Doi N, Mizutani Y, Yamazaki T et al. (1993) Embryonic development and postnatal changes in free d-aspartate and d-serine in the human prefrontal cortex. J Neurochem 61:348–351Google Scholar
  37. Hashimoto A, Oka T, Nishikawa T (1995) Anatomical distribution and postnatal changes in endogenous free d-aspartate and d-serine in rat brain and periphery. Eur J Neurosci 7:1657–1663PubMedGoogle Scholar
  38. Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N, Nakazato M, Kumakiri C, Okada S, Hasegawa H et al (2003) Decreased serum levels of d-serine in patients with schizophrenia: evidence in support of the N-methyl-d-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 60:572–576PubMedGoogle Scholar
  39. Hashimoto A, Yoshikawa M, Niwa A, Konno R (2005) Mice lacking d-amino acid oxidase activity display marked attenuation of stereotypy and ataxia induced by MK-801. Brain Res 1033:210–215PubMedGoogle Scholar
  40. Hashimoto A, Konno R, Yano H, Yoshikawa M, Tamaki R, Matsumoto H, Kobayashi H (2008) Mice lacking d-amino acid oxidase activity exhibit marked reduction of methamphetamine-induced stereotypy. Eur J Pharmacol 586:221–225PubMedGoogle Scholar
  41. Hashimoto K, Fujita Y, Horio M, Kunitachi S, Iyo M, Ferraris D, Tsukamoto T (2009) Co-administration of a d-amino acid oxidase inhibitor potentiates the efficacy of d-serine in attenuating prepulse inhibition deficits after administration of dizocilpine. Biol Psychiatry 65:1103–1106PubMedGoogle Scholar
  42. Heresco-Levy U, Javitt DC, Ebstein R, Vass A, Lichtenberg P, Bar G, Catinari S, Ermilov M (2005) d-Serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol Psychiatry 57:577–585PubMedGoogle Scholar
  43. Hons J, Zirko R, Ulrychova M, Cermakova E, Libiger J (2008) d-Serine serum levels in patients with schizophrenia: relation to psychopathology and comparison to healthy subjects. Neuro Endocrinol Lett 29:485–492PubMedGoogle Scholar
  44. Horiike K, Tojo H, Arai R, Nozaki M, Maeda T (1994) d-Amino-acid oxidase is confined to the lower brain stem and cerebellum in rat brain: regional differentiation of astrocytes. Brain Res 652:297–303PubMedGoogle Scholar
  45. Horio M, Kohno M, Fujita Y, Ishima T, Inoue R, Mori H, Hashimoto K (2011) Levels of d-serine in the brain and peripheral organs of serine racemase (Srr) knock-out mice. Neurochem Int 59:853–859PubMedGoogle Scholar
  46. Huang AS, Beigneux A, Weil ZM, Kim PM, Molliver ME, Blackshaw S, Nelson RJ, Young SG, Snyder SH (2006) d-Aspartate regulates melanocortin formation and function: behavioral alterations in d-aspartate oxidase-deficient mice. J Neurosci 26:2814–2819PubMedGoogle Scholar
  47. Inoue R, Hashimoto K, Harai T, Mori H (2008) NMDA- and β-amyloid1-42-induced neurotoxicity is attenuated in serine racemase knock-out mice. J Neurosci 28:14486–14491PubMedGoogle Scholar
  48. Jönsson EG, Saetre P, Vares M, Andreou D, Larsson K, Timm S, Rasmussen HB, Djurovic S, Melle I, Andreassen OA, Agartz I, Werge T, Hall H, Terenius L (2009) DTNBP1, NRG1, DAOA, DAO and GRM3 polymorphisms and schizophrenia: an association study. Neuropsychobiology 59:142–150PubMedGoogle Scholar
  49. Kakegawa W, Miyoshi Y, Hamase K, Matsuda S, Matsuda K, Kohda K, Emi K, Motohashi J, Konno R, Zaitsu K, Yuzaki M (2011) d-Serine regulates cerebellar LTD and motor coordination through the δ2 glutamate receptor. Nat Neurosci 14:603–611PubMedGoogle Scholar
  50. Kantrowitz JT, Malhotra AK, Cornblatt B, Silipo G, Balla A, Suckow RF, D’Souza C, Saksa J, Woods SW, Javitt DC (2010) High dose d-serine in the treatment of schizophrenia. Schizophr Res 121:125–130PubMedGoogle Scholar
  51. Kapoor R, Lim KS, Cheng A, Garrick T, Kapoor V (2006) Preliminary evidence for a link between schizophrenia and NMDA-glycine site receptor ligand metabolic enzymes, d-amino acid oxidase (DAAO) and kynurenine aminotransferase-1 (KAT-1). Brain Res 1106:205–210PubMedGoogle Scholar
  52. Kappor R, Kapoor V (1997) Distribution of d-amino acid oxidase (DAO) activity in the medulla and thoracic spinal cord of the rat: implications for a role for d-serine in autonomic function. Brain Res 771:351–355PubMedGoogle Scholar
  53. Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, Inoue Y, Kutsuwada T, Yagi T, Kang Y et al (1995) Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell 81:245–252Google Scholar
  54. Katane M, Homma H (2011) d-Aspartate—an important bioactive substance in mammals: a review from an analytical and biological point of view. J Chromatogr B 879:3108–3121Google Scholar
  55. Kera Y, Aoyama H, Matsumura H, Hasegawa A, Nagasaki H, Yamada R (1995) Presence of free d-glutamate and d-aspartate in rat tissues. Biochim Biophys Acta 1243:283–286PubMedGoogle Scholar
  56. Kim PM, Aizawa H, Kim PS, Huang AS, Wickramasinghe SR, Kashani AH, Barrow RK, Huganir RL, Ghosh A, Snyder SH (2005) Serine racemase: activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration. Proc Natl Acad Sci USA 102:2105–2110PubMedGoogle Scholar
  57. Kim PM, Duan X, Huang AS, Liu CY, Ming G-L, Song H, Snyder SH (2010) Aspartate racemase, generating neuronal d-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci USA 107:3175–3179PubMedGoogle Scholar
  58. Konno R, Yasumura Y (1983) Mouse mutant deficient in d-amino acid oxidase activity. Genetics 103:277–285PubMedGoogle Scholar
  59. Konno R, Sasaki M, Asakura S, Fukui K, Enami J, Niwa A (1997) d-Amino-acid oxidase is not present in the mouse liver. Biochim Biophys Acta 1335:173–181PubMedGoogle Scholar
  60. Konno R, Brückner H, D’Aniello A, Fisher G, Fujii N, Homma H (eds) (2008) d-Amino Acids—A New Frontier in Amino Acid and Protein Research. Nova Science Publishers, New YorkGoogle Scholar
  61. Konno R, Okamura T, Kasai N, Summer KH, Niwa A (2009) Mutant rat strain lacking d-amino-acid oxidase. Amino Acids 37:367–375PubMedGoogle Scholar
  62. Krebs HA (1935) Metabolism of amino-acids: deamination of amino-acids. Biochem J 29:1620–1644PubMedGoogle Scholar
  63. Labrie V, Clapcote SJ, Roder JC (2009a) Mutant mice with reduced NMDA-NR1 glycine affinity or lack of d-amino acid oxidase function exhibit altered anxiety-like behaviors. Pharmacol Biochem Behav 91:610–620PubMedGoogle Scholar
  64. Labrie V, Duffy S, Wang W, Barger SW, Baker GB, Roder JC (2009b) Genetic inactivation of d-amino acid oxidase enhances extinction and reversal learning in mice. Learn Mem 16:28–37PubMedGoogle Scholar
  65. Labrie V, Fukumura R, Rastogi A, Fick LJ, Wang W, Boutros PC, Kennedy JL, Semeralul MO, Lee FH, Baker GB et al (2009c) Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet 18:3227–3243PubMedGoogle Scholar
  66. Labrie V, Wong AH, Roder JC (2012) Contributions of the d-serine pathway to schizophrenia. Neuropharmacology 62:1484–1503PubMedGoogle Scholar
  67. Lu JM, Gong N, Wang YC, Wang YX (2012) d-Amino acid oxidase-mediated increase in spinal hydrogen peroxide is mainly responsible for formalin-induced tonic pain. Br J Pharmacol 165:1941–1955PubMedGoogle Scholar
  68. Madeira C, Freitas ME, Vargas-Lopes C, Wolosker H, Panizzutti R (2008) Increased brain d-amino acid oxidase (DAAO) activity in schizophrenia. Schizophr Res 101:76–83PubMedGoogle Scholar
  69. Maekawa M, Watanabe M, Yamaguchi S, Konno R, Hori Y (2005a) Spatial learning and long-term potentiation of mutant mice lacking d-amino-acid oxidase. Neurosci Res 53:34–38PubMedGoogle Scholar
  70. Maekawa M, Okamura T, Kasai N, Hori Y, Summer KH, Konno R (2005b) d-Amino-acid oxidase is involved in d-serine-induced nephrotoxicity. Chem Res Toxicol 18:1678–1682PubMedGoogle Scholar
  71. Maekawa M, Wakamatsu S, Huse N, Konno R, Hori Y (2012) Functional roles of endogenous d-serine in the chronic pain-induced plasticity of NMDAR-mediated synaptic transmission in the central amygdala of mice. Neurosci Lett 520:57–61PubMedGoogle Scholar
  72. Millecamps S, Da Barroca S, Cazeneuve C, Salachas F, Pradat PF, Danel-Brunaud V, Vandenberghe N, Lacomblez L, Le Forestier N, Bruneteau G et al (2010) Questioning on the role of d-amino acid oxidase in familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 107:E107PubMedGoogle Scholar
  73. Mitchell J, Paul P, Chen HJ, Morris A, Payling M, Falchi M, Habgood J, Panoutsou S, Winkler S, Tisato V et al (2010) Familial amyotrophic lateral sclerosis is associated with a mutation in d-amino acid oxidase. Proc Natl Acad Sci USA 107:7556–7561PubMedGoogle Scholar
  74. Miyoshi Y, Hamase K, Tojo Y, Mita M, Konno R, Zaitsu K (2009) Determination of d-serine and d-alanine in the tissues and physiological fluids of mice with various d-amino-acid oxidase activities using two-dimensional high-performance liquid chromatography with fluorescence detection. J Chromatogr B 877:2506–2512Google Scholar
  75. Miyoshi Y, Hamase K, Okamura T, Konno R, Kasai N, Tojo Y, Zaitsu K (2011) Simultaneous two-dimensional HPLC determination of free d-serine and d-alanine in the brain and periphery of mutant rats lacking d-amino-acid oxidase. J Chromatogr B 879:3184–3189Google Scholar
  76. Morehead RP, Poe WD, Williams JO, Lazenby ME (1946) The influence of age and species on the nephrotoxic action of dl-serine. Am J Pathol 22:658PubMedGoogle Scholar
  77. Mori H, Inoue R (2010) Serine racemase knockout mice. Chem Biodivers 7:1573–1578PubMedGoogle Scholar
  78. Morikawa A, Hamase K, Inoue T, Konno R, Niwa A, Zaitsu K (2001) Determination of free d-aspartic acid, d-serine and d-alanine in the brain of mutant mice lacking d-amino acid oxidase activity. J Chromatogr B 757:119–125Google Scholar
  79. Morikawa A, Hamase K, Zaitsu K (2003) Determination of d-alanine in the rat central nervous system and periphery using column-switching high-performance liquid chromatography. Anal Biochem 312:66–72PubMedGoogle Scholar
  80. Morikawa A, Hamase K, Ohgusu T, Etoh S, Tanaka H, Koshiishi I, Shoyama Y, Zaitsu K (2007) Immunohistochemical localization of d-alanine to β-cells in rat pancreas. Biochem Biophys Res Commun 355:872–876PubMedGoogle Scholar
  81. Morikawa A, Hamase K, Miyoshi Y, Koyanagi S, Ohdo S, Zaitsu K (2008) Circadian changes of d-alanine and related compounds in rats and the effect of restricted feeding on their amounts. J Chromatogr B 875:168–173Google Scholar
  82. Mothet J-P, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, Rogawski MA, Snyder SH (2000) d-Serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc Natl Acad Sci USA 97:4926–4931PubMedGoogle Scholar
  83. Nagata Y, Horiike K, Maeda T (1994) Distribution of free d-serine in vertebrate brains. Brain Res 634:291–295PubMedGoogle Scholar
  84. Nishikawa T (2011) Analysis of free d-serine in mammals and its biological relevance. J Chromatogr B 879:3169–3183Google Scholar
  85. Ohide H, Miyoshi Y, Maruyama R, Hamase K, Konno R (2011) d-Amino acid metabolism in mammals: biosynthesis, degradation and analytical aspects of the metabolic study. J Chromatogr B 879:3162–3168Google Scholar
  86. Ohnuma T, Shibata N, Maeshima H, Baba H, Hatano T, Hanzawa R, Arai H (2009) Association analysis of glycine- and serine-related genes in a Japanese population of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 33:511–518PubMedGoogle Scholar
  87. Ohnuma T, Shibata N, Baba H, Ohi K, Yasuda Y, Nakamura Y, Okochi T, Naitoh H, Hashimoto R, Iwata N et al (2010) No association between DAO and schizophrenia in a Japanese patient population: a multicenter replication study. Schizophr Res 118:300–302PubMedGoogle Scholar
  88. Ono K, Shishido Y, Park HK, Kawazoe T, Iwana S, Chung SP, Abou El-Magd RM, Yorita K, Okano M, Watanabe T et al (2009) Potential pathophysiological role of d-amino acid oxidase in schizophrenia: immunohistochemical and in situ hybridization study of the expression in human and rat brain. J Neural Transm 116:1335–1347PubMedGoogle Scholar
  89. Panatier A, Theodosis DT, Mothet J-P, Touquet B, Pollegioni L, Poulain DA, Oliet SH (2006) Glia-derived d-serine controls NMDA receptor activity and synaptic memory. Cell 125:775–784PubMedGoogle Scholar
  90. Pollegioni L, Sacchi S (2010) Metabolism of the neuromodulator d-serine. Cell Mol Life Sci 67:2387–2404PubMedGoogle Scholar
  91. Popiolek M, Ross JF, Charych E, Chanda P, Gundelfinger ED, Moss SJ, Brandon NJ, Pausch MH (2011) d-Amino acid oxidase activity is inhibited by an interaction with bassoon protein at the presynaptic active zone. J Biol Chem 286:28867–28875PubMedGoogle Scholar
  92. Roussos P, Giakoumaki SG, Adamaki E, Anastasios G, Nikos RK, Bitsios P (2011) The association of schizophrenia risk d-amino acid oxidase polymorphisms with sensorimotor gating, working memory and personality in healthy males. Neuropsychopharmacology 36:1677–1688PubMedGoogle Scholar
  93. Sacchi S, Bernasconi M, Martineau M, Mothet J-P, Ruzzene M, Pilone MS, Pollegioni L, Molla G (2008) pLG72 modulates intracellular d-serine levels through its interaction with d-amino acid oxidase: effect on schizophrenia susceptibility. J Biol Chem 283:22244–22256PubMedGoogle Scholar
  94. Sakata K, Fukushima T, Minje L, Ogurusu T, Taira H, Mishina M, Shingai R (1999) Modulation by l- and d-isoforms of amino acids of the l-glutamate response of N-methyl-d-aspartate receptors. Biochemistry 38:10099–10106PubMedGoogle Scholar
  95. Sasabe J, Chiba T, Yamada M, Okamoto K, Nishimoto I, Matsuoka M, Aiso S (2007) d-Serine is a key determinant of glutamate toxicity in amyotrophic lateral sclerosis. EMBO J 26:4149–4159PubMedGoogle Scholar
  96. Sasabe J, Miyoshi Y, Suzuki M, Mita M, Konno R, Matsuoka M, Hamase K, Aiso S (2012) d-Amino acid oxidase controls motoneuron degeneration through d-serine. Proc Natl Acad Sci USA 109:627–632PubMedGoogle Scholar
  97. Sasaki M, Konno R, Nishio M, Niwa A, Yasumura Y, Enami J (1992) A single-base-pair substitution abolishes d-amino-acid oxidase activity in the mouse. Biochim Biophys Acta 1139:315–318PubMedGoogle Scholar
  98. Schell MJ, Molliver ME, Snyder SH (1995) d-Serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA 92:3948–3952PubMedGoogle Scholar
  99. Smith SM, Uslaner JM, Hutson PH (2010) The therapeutic potential of d-amino acid oxidase (DAAO) Inhibitors. Open Med Chem J 4:3–9PubMedGoogle Scholar
  100. Strick CA, Li C, Scott L, Harvey B, Hajós M, Steyn SJ, Piotrowski MA, James LC, Downs JT, Rago B et al (2011) Modulation of NMDA receptor function by inhibition of d-amino acid oxidase in rodent brain. Neuropharmacology 61:1001–1015PubMedGoogle Scholar
  101. Thompson M, Marecki JC, Marinesco S, Labrie V, Roder JC, Barger SW, Crow JP (2012) Paradoxical roles of serine racemase and d-serine in the G93A mSOD1 mouse model of amyotrophic lateral sclerosis. J Neurochem 120:598–610Google Scholar
  102. Tsai G, Yang P, Chung LC, Lange N, Coyle JT (1998) d-Serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 44:1081–1089PubMedGoogle Scholar
  103. Verrall L, Walker M, Rawlings N, Benzel I, Kew JN, Harrison PJ, Burnet PWJ (2007) d-Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia. Eur J Neurosci 26:1657–1669PubMedGoogle Scholar
  104. Verrall L, Burnet PWJ, Betts JF, Harrison PJ (2010) The neurobiology of d-amino acid oxidase and its involvement in schizophrenia. Mol Psychiatry 15:122–137PubMedGoogle Scholar
  105. Wake K, Yamazaki H, Hanzawa S, Konno R, Sakio H, Niwa A, Hori Y (2001) Exaggerated responses to chronic nociceptive stimuli and enhancement of N-methyl-d-aspartate receptor-mediated synaptic transmission in mutant mice lacking d-amino-acid oxidase. Neurosci Lett 297:25–28PubMedGoogle Scholar
  106. Wang LZ, Zhu XZ (2003) Spatiotemporal relationships among d-serine, serine racemase, and d-amino acid oxidase during mouse postnatal development. Acta Pharmacol Sin 24:965–974PubMedGoogle Scholar
  107. Weimar WR, Neims AH (1977) The development of d-amino acid oxidase in rat cerebellum. J Neurochem 29:649–656PubMedGoogle Scholar
  108. Wolosker H (2011) Serine racemase and the serine shuttle between neurons and astrocytes. Biochim Biophys Acta 1814:1558–1566PubMedGoogle Scholar
  109. Wolosker H, Sheth KN, Takahashi M, Mothet J-P, Brady RO Jr, Ferris CD, Snyder SH (1999) Purification of serine racemase: biosynthesis of the neuromodulator d-serine. Proc Natl Acad Sci USA 96:721–725PubMedGoogle Scholar
  110. Wolosker H, D’Aniello A, Snyder SH (2000) d-Aspartate disposition in neuronal and endocrine tissues: ontogeny, biosynthesis and release. Neuroscience 100:183–189PubMedGoogle Scholar
  111. Wu S, Barger SW (2004) Induction of serine racemase by inflammatory stimuli is dependent on AP-1. Ann N Y Acad Sci 1035:133–146PubMedGoogle Scholar
  112. Yamada K, Ohnishi T, Hashimoto K, Ohba H, Iwayama-Shigeno Y, Toyoshima M, Okuno A, Takao H, Toyota T, Minabe Y et al (2005) Identification of multiple serine racemase (SRR) mRNA isoforms and genetic analyses of SRR and DAO in schizophrenia and d-serine levels. Biol Psychiatry 57:1493–1503PubMedGoogle Scholar
  113. Yang Y, Ge W, Chen Y, Zhang Z, Shen W, Wu C, Poo M, Duan S (2003) Contribution of astrocytes to hippocampal long-term potentiation through release of d-serine. Proc Natl Acad Sci USA 100:15194–15199PubMedGoogle Scholar
  114. Yoshikawa M, Oka T, Kawaguchi M, Hashimoto A (2004) MK-801 upregulates the expression of d-amino acid oxidase mRNA in rat brain. Brain Res Mol Brain Res 131:141–144PubMedGoogle Scholar
  115. Zhang M, Ballard ME, Basso AM, Bratcher N, Browman KE, Curzon P, Konno R, Meyer AH, Rueter LE (2011) Behavioral characterization of a mutant mouse strain lacking d-amino acid oxidase activity. Behav Brain Res 217:81–87PubMedGoogle Scholar
  116. Zhao W, Konno R, Zhou X-J, Yin M, Wang Y-X (2008) Inhibition of d-amino-acid oxidase activity induces pain relief in mice. Cell Mol Neurobiol 28:581–591PubMedGoogle Scholar
  117. Zhao W-J, Gao Z-Y, Wei H, Nie H-Z, Zhao Q, Zhou X-J, Wang Y-X (2010) Spinal d-amino acid oxidase contributes to neuropathic pain in rats. J Pharmacol Exp Ther 332:248–254PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Masahiro Yamanaka
    • 1
  • Yurika Miyoshi
    • 2
  • Hiroko Ohide
    • 1
  • Kenji Hamase
    • 2
  • Ryuichi Konno
    • 1
    Email author
  1. 1.Department of Pharmaceutical SciencesInternational University of Health and WelfareOhtawaraJapan
  2. 2.Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan

Personalised recommendations