Advertisement

Amino Acids

, Volume 45, Issue 3, pp 451–461 | Cite as

Amino acid sensing in the gastrointestinal tract

  • Ana San Gabriel
  • Hisayuki Uneyama
Invited Review

Abstract

Rapid progress in gastroenterology during the first part of the last century has shown that gastrointestinal (GI) function is regulated by neuroendocrine, paracrine and endocrine signals. However, recent advances in chemical sensing, especially in the last decade, have revealed that free l-amino acids (AA), among other nutrients, play a critical role in modifying exocrine and endocrine secretion, modulating protein digestion, metabolism and nutrient utilization, and supporting the integrity and defense of the GI mucosa. Many of the mechanisms by which AAs elicit these functions in the GI has been linked to the traditional concept of hormone release and nervous system activation. But most these effects are not direct. AAs appear to function by binding to a chemical communication system such as G protein-coupled receptors (GPCRs) that activate signaling pathways. These intracellular signals, although their molecular bases are not completely elucidated yet, are the ones responsible for the neuronal activity and release of hormones that in turn regulate GI functions. This review aims to describe the distribution of the known GPCRs from the class 3 superfamily that bind to different kinds of AA, especially from the oropharyngeal cavity to the stomach, what kind of taste qualities they elicit, such as umami, bitter or sweet, and their activity in the GI tract.

Keywords

Amino acids Taste receptors Gastrointestinal tract Chemical sensing Gastric phase Umami Glutamic acid Monosodium glutamate 

Abbreviations

AA

Amino acids

CaSR

Extracellular calcium-sensing receptor

ECL

Enterochromaffin-like cells

GI

Gastrointestinal

GPCRs

G protein-coupled receptors

HEK

Human embryonic kidney (cells)

mGluR1

Metabotropic glutamate receptor type 1

mGluR4

Metabotropic glutamate receptor type 4

NO

Nitric oxide

5-HT

Serotonin

Notes

Acknowledgments

I would like to thank Dr. Eiji Nakamura for his critical comments and discussions during the preparation of this manuscript.

Conflict of interest

Both authors are employees of Ajinomoto Co., Inc.

References

  1. Adibi SA, Mercer DW (1973) Protein digestion in human intestine as reflected in luminal, mucosal, and plasma amino acid concentrations after meals. J Clin Invest 52:1586–1594PubMedCrossRefGoogle Scholar
  2. Agostini C, Carratu B, Boniglia C, Riva E, Sanzini E (2000) Free amino acid content in standard infant formulas: comparison with human milk. J Am Coll Nutr 19:434–438CrossRefGoogle Scholar
  3. Akiba Y, Watanabe C, Mizumori M, Kaunitz JD (2009) Luminal L-glutamate enhances duodenal mucosal defense mechanisms via multiple glutamate receptors in rats. Am J physiol Gastrointest Liver Physiol 297:G781–G791PubMedCrossRefGoogle Scholar
  4. Bachmanov AA, Beauchamp GK (2007) Taste receptor genes. Annu Rev Nutr 27:389–414PubMedCrossRefGoogle Scholar
  5. Beauchamp GK, Maller O, Roger JG (1977) Flavor preferences in cats (Felis catus and Panthera sp.). J Comp Physiol 91:1118–1127Google Scholar
  6. Bellisle F, Monneuse MO, Chabert M, Laure-Achagiotis C, Latenaume MT, Louis-sylvestre J (1991) Monosodium Glutamate as a palatability enhancer in the European diet. Physiol Behav 49:869–873PubMedCrossRefGoogle Scholar
  7. Bezecon C, le Coutre J, Damak S (2007) Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem Senses 32:41–49CrossRefGoogle Scholar
  8. Birch GG, Kemp S (1989) Apparent specific volumens and tastes of amino acids. Chem Seses 14:249–258CrossRefGoogle Scholar
  9. Blackshaw LA, Brookes SJ, Grundy D, Schemann M (2007) Sensory transmission in the gastrointestinal tract. Neurogastroenterol Motil 19:1–19PubMedCrossRefGoogle Scholar
  10. Brown EM, MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 1:239–297Google Scholar
  11. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC (1993) Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366:575–580PubMedCrossRefGoogle Scholar
  12. Busque SM, Kerstetter JE, Geibel JP, Insogna K (2005) L-type amino acids stimulate gastric acid secretion by activation of the calcium-sensing receptor in parietal cells. Am J Physiol Gastrointest Liver Physiol 289:G664–G669PubMedGoogle Scholar
  13. Bystrova MF, Romanov RA, Rogachevskaja OA, Churbanov GD, Kolesnikov SS (2010) Functional expression of the extracellular-Ca2+-sensing receptor in mouse taste cells. J Cell Sci 123(Pt6):972–982Google Scholar
  14. Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50:131–149PubMedCrossRefGoogle Scholar
  15. Caspary WF (1992) Physiological and pathophysiology of instestinal absorption. Am J Clin Nutr 55(1 Suppl):299S–308SPubMedGoogle Scholar
  16. Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ (2000) T2Rs functions as bitter taste receptors. Cell 6:703–711CrossRefGoogle Scholar
  17. Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E, Ryba NJ, Zuker CS (2010) The cells and peripheral representation of sodium taste in mice. Nature 7286:297–301CrossRefGoogle Scholar
  18. Chaudhari N, Landin AM, Roper SD (2000) A metabotropic glutamate receptor variant functions as a taste receptor. Nat Neurosci 3:113–119PubMedCrossRefGoogle Scholar
  19. Chuang CK, Lin SP, Lee HC, Wang TJ, Shih YS, Huang FY, Yeung CY (2005) Free amino acids in full-term and pre-term human milk and infant formula. J Pediatr Gastroenterol Nutr 40:496–500PubMedCrossRefGoogle Scholar
  20. Clapp TR, Yang R, Stoick CL, Kinnamon SC, Kinnamon JC (2004) Morphologic characterization of rat taste receptor cells that express components of the phospholipase C signaling pathway. J Comp Neurol 3:311–321CrossRefGoogle Scholar
  21. Clarke GD, Davison JS (1978) Mucosal receptors in the gastric antrum and small intestine of the rat with afferent fibers in the cervical vagus. J Physiol 284:55–67PubMedGoogle Scholar
  22. Conigrave AD, Brown EM (2006) Taste receptors in the gastrointestinal tract. II. L-amino acid sensing by calcium-sensing receptors: implications for GI physiology. Am J Physiol Gastrointest Liver Physiol 291:G753–G761PubMedCrossRefGoogle Scholar
  23. Conigrave AD, Quinn SJ, Brown EM (2000) L-amino acid sensing by the extracellular Ca2+-sensing receptor. Proc Natl Acad Sci USA 9:4814–4819CrossRefGoogle Scholar
  24. Conigrave AD, Mun HC, Lok HC (2007) Aromatic l-amino acids activate the calcium-sensing receptor. J Nutr 6(Suppl 1):1524S–1527SGoogle Scholar
  25. Cordoba JJ, Antequera Rojas T, Garcia Gonzalez C, Ventanas Barroso J, Bote Lopez CJ, Asensio M (1994) Evolution of free amino acids and amines during ripening of iberian cured ham. J Agric Food Chem 42:2296–2301CrossRefGoogle Scholar
  26. Curtis RI (2009) Umami and the foods of classical antiquity. Am J Clin Nutr 90:712S–718SPubMedCrossRefGoogle Scholar
  27. Deems DA, Doty RL, Settle RG, Moore-Gillon V, Shaman P, Mester AF, Kimmelman CP, Brightman VJ, Snow JB Jr (1991) Smell and taste disorders, a study of 750 patients form the university of Pennsylvania smell and taste center. Arch Otolaryngol Head Neck Surg 117:519–528PubMedCrossRefGoogle Scholar
  28. DeFazio RA, Dvoryanchikov G, Maruyama Y, Kim JW, Pereira E, Roper SD, Chaudhari N (2006) Separate populations of receptor cells and presynaptic cells in mouse taste buds. J Neurosci 2006(15):3971–3980CrossRefGoogle Scholar
  29. DelValle J, Yamada T (1990) Amino acid and amines stimulate gastrin release from canine antral G-cells via different pathways. J Clin Invet 85:139–143CrossRefGoogle Scholar
  30. Drake SL, Carunchia Whetstine ME, Drake MA, Courtney P, Fligner K, Jenkins J, Pruitt C (2007) Sources of umami taste in Cheddar and Swiss cheeses. J Food Sci 72:S360–S366PubMedCrossRefGoogle Scholar
  31. Easwood C, Maubach K, Kirkup AJ, Grundy D (1998) The role of endogenous cholecystokinin in the sensory transduction of luminal nutrient signals in the rat jejunum. Neurosci Lett 254:145–148CrossRefGoogle Scholar
  32. Feng J, Petersen CD, Coy DH, Jiang JK, Thomas CJ, Pollak MR, Wank SA (2010) Calcium-sensing receptor is a physiologic multimodal chemosensor regulating gastric G-cell growth and gastrin secretion. Proc Natl Acad Schi USA 107:17791–17796CrossRefGoogle Scholar
  33. Fujita T, Kobayashi S, Yui R (1980) Paraneuron concept and its current implications. Adv Biochem Psychoparmacol 25:321–325Google Scholar
  34. Fuke S, Konosu S (1991) Taste-active components in some foods: a review of Japanese research. Physiol Behav 5:863–868CrossRefGoogle Scholar
  35. Geibel JP, Hebert SC (2009) The functions and roles of the extracellular Ca2+-sensing receptor along the gastrointestinal tract. Annu Rev Physiol 71:205–217PubMedCrossRefGoogle Scholar
  36. Ghosh S, Smriga M, Vuvor F, Suri D, Mohammed H, Armah SM, Scrimshaw NS (2010) Effect of lysine supplementation on health and mobidity in subjects belonging to poor-peri-urban households in Accra, Ghana. Am J Clin Nutr 92:928–939PubMedCrossRefGoogle Scholar
  37. Giduck SA, Threatte RM, Kare MR (1987) Cephalic reflexes: their role in digestion and possible roles in absorption and metabolism. J Nutr 117:1191–1196PubMedGoogle Scholar
  38. Goo T, Akiba Y, Kaunitz JD (2010) Mechanisms of intragastric pH sensing. Curr Gastroenterol Rep 12:465–470PubMedCrossRefGoogle Scholar
  39. Graham CS, Gaham BG, Bartlett JA, Heald AE, Schiffman SS (1995) Taste and smell losses in HIV infected patients. Physiol Behav 58:287–293PubMedCrossRefGoogle Scholar
  40. Haid D, Widmayer P, Breer H (2011) Nutrient sensing receptors in gastric endocrine cells. J Mol Histol 42:355–364PubMedCrossRefGoogle Scholar
  41. Haid DC, Jordan-Biegger C, Widmayer P, Breer H (2012) Receptors responsive to protein breakdown products in G-cells and D-cells of mouse, swine and human. Front Physiol 3:65PubMedCrossRefGoogle Scholar
  42. Hodson NA, Linden RW (2006) The effect of monosodium glutamate on parotid salivary flow in comparison to the response to representatives of other four basic tastes. Physiol Behav 89:711–717PubMedCrossRefGoogle Scholar
  43. Hofer D, Puschel B, Drenckahn D (1996) Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. Proc Natl Acad Sci USA 93:6631–6634PubMedCrossRefGoogle Scholar
  44. Hofer D, Asan E, Drenchkhaln D (1999) Chemosensory perception in the gut. News physiol Sci 14:18–23PubMedGoogle Scholar
  45. Humayun MA, Elango R, Ball RO, Pencharz PB (2007) Reevaluation of the protein requirement in young indicator amino acid oxidation technique. Am J Clin Nutr 86:995–1002PubMedGoogle Scholar
  46. Hundal HS, Taylor PM (2009) Amino acid transceptors: gate keeper of nutrient exchange and regulators of nutrient signaling. Am J Physiol Endocrinol Metab 296:E603–E613PubMedCrossRefGoogle Scholar
  47. Iggo A (1957) Gastric mucosal chemoreceptors with vagal afferent fibers in the cat. Q J Exp Physiol Cogn Med Sci 42:398–409PubMedGoogle Scholar
  48. Ikeda K (2002) New seasonings. Chem Senses 27:847–849PubMedCrossRefGoogle Scholar
  49. Institute of Medicine (US) Committee on Strategies to Reduce Sodium Intake, Henney JE, Taylor CL, Boon CS (eds) (2010) Strategies to reduce sodium intake in the United States. National Academic Press, Washington, DCGoogle Scholar
  50. Institute of Medicine of the National Academies (IOM) (2002/2005) Dietary reference intakes: energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. The National Academy Press, Washington, DCGoogle Scholar
  51. Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H (2006) Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci USA 33:12569–12574CrossRefGoogle Scholar
  52. Jahan-Mihan A, Luhovyy BL, El Khoury D, Anderson GH (2011) Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract. Nutrients 3:574–603PubMedCrossRefGoogle Scholar
  53. Jiang P, Josue J, Li X, Glaser D, Li W, Brand JG, Margolskee RF, Reed DR, Beauchamp GK (2012) Major taste loss in carnivorous mammals. Proc Nalt Acad Sci USA 109:4956–4961CrossRefGoogle Scholar
  54. Jin K, Xue C, Wu X, Qian J, Zhu Y, Yang Z, Yonezawa T, Crabbe MJ, Cao Y, Hasegawa M, Zhong Y, Zheng Y (2011) Why does the giant panda eat bamboo? A comparative analysis of appetite-reward-related genes among mammals. PLoS One 7:e22602CrossRefGoogle Scholar
  55. Kato H, Rhue ME, Nishimura T (1989) Role of free amino acids and peptides in food taste. In: Teranishi R, Buttery R, Shahidi F (eds) Flavor chemistry, trends and developments. vol 388. ACS, WashingtonGoogle Scholar
  56. Kawai M, Skine-Hayakawa Y, Okiyama A, Ninomiya Y (2012) Gustatory sensation of L- and D-amino acids in humans. Amino acids. doi: 10.1007/s00726-012-1315-x
  57. Khropycheva R, Andreeva J, Uneyama H, Torii K, Zolotarev V (2011) Dietary glutmate signal evokes gastric juice excretion in dogs. Digestion 83(Suppl 1):7–12PubMedCrossRefGoogle Scholar
  58. Kinnamon JC, Henzler DM, Royer SM (1993) HVEM ultrastructural analysis of mouse fungiform taste buds, cell types, and associated synapses. Microc Res Tech 26:142–156CrossRefGoogle Scholar
  59. Kirchhoff P, Dave MH, Remy C, Kosiek O, Busque SM, Dufner M, Geibel JP, Verrey F, Wagner CA (2006) An amino acid transporter involved in gastric acid secretion. Pflugers Arch 451:738–748PubMedCrossRefGoogle Scholar
  60. Kitamura A, Torii K, Uneyama H, Niijima A (2010) Role played by afferent signals from olfactory, gustatory and gastrointestinal sensors in regulation of autonomic nerve activity. Biol Pharm Bull 33:1778–17782PubMedCrossRefGoogle Scholar
  61. Kitamura A, Sato W, Uneyama H, Torii K, Niijima A (2011) Effects of intragastric infusion of inosine monophosphate and l-glutamate on vagal gastric afferent activity and subsequent autonomic reflexes. J Physiol Sci 61:65–71PubMedCrossRefGoogle Scholar
  62. Konturek SJ, Brzozowski T, Konturek PC, Schubert ML, Pawlik WW, Padol S, Bayner J (2008) Brain–gut and appetite regulating hormones in the control of gastric secretion and mucosal protection. J Physiol Pharmacol 59(Suppl 2):7–31PubMedGoogle Scholar
  63. Koutsidis G, Elmore JS, Oruna-Concha MJ, Campo MM, Wood JD, Moltram DS (2008) Water-soluble precursors of beef flavor: I. Effect of diet and breed. Meat Sci 79:124–130PubMedCrossRefGoogle Scholar
  64. Kuang D, Yao Y, Kam J, Tsushima RG, Hampson DR (2005) Clonning and characterization of a family C orphan G-protein coupled receptor. J Neurochem 93:383–391PubMedCrossRefGoogle Scholar
  65. Kubo Y, Miyashita T, Murata Y (1998) Structural basesis for a Ca2+-sensing function of the metabotropic glutamate receptors. Science 279:1722–1725PubMedCrossRefGoogle Scholar
  66. Laska M (2010) Olfactory perception of 6 amino acids by human subjects. Chem Senses 35:279–287PubMedCrossRefGoogle Scholar
  67. Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E (2002) Human receptors for sweet and umami taste. Proc Natl Acad Sci USA 99:4692–4696Google Scholar
  68. Li X, Li W, Wang H, Cao J, Maehashi K, Huang L, Bachmanov AA, Reed DR, Legrand-Defretin V, Beauchamp GK, Brand JG (2005) Pseudogenization of a sweet-receptor gene accounts for cats’ indifference towards sugar. PLoS Genet 1:27–35PubMedCrossRefGoogle Scholar
  69. Lindemann B (1996) Taste Reception. Physiol Rev 76:719–766Google Scholar
  70. Liou AP, Sei Y, Zhao X, Feng J, Lu X, Thomas C, Pechhold S, Raybould HE, Wank SA (2011) The extracellular calcium-sensing receptor is required for the cholecystokinin secretion in response to l-phenylalanine in acutely isolated intestinal cells. Am J Physiol Gastrointest Liver Physiol 300:G538–G546PubMedCrossRefGoogle Scholar
  71. Martin L, Antequera T, Ventanas J, Benitez-Donoso R, Cordoba JJ (2001) Free amino acids and other non-volatile compounds formed during processing of Iberian ham. Meat Sci 59:363–368PubMedCrossRefGoogle Scholar
  72. Maruyama Y, Yasuda R, Kuroda M, Eto Y (2012) Kokumi substances, enhancers of basic tastes, induce responses in calcium-sensing receptor expressing taste cells. PLoS One 4:e34489CrossRefGoogle Scholar
  73. Nakamura E, Hasumura M, San Gabriel A, Uneyama H, Torii K (2010) New frotiers in gut nutrient sensor research: luminal glutamate-sensing cells in rat gastric mucosa. J Pharmacol Sci 112:13–18PubMedCrossRefGoogle Scholar
  74. Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 3:381–390CrossRefGoogle Scholar
  75. Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS (2002) An amino-acid receptor. Nature 416:199–202PubMedCrossRefGoogle Scholar
  76. Niccolai N, Spadaccini R, Scarselli M, Bernini A, Crescenzi O, Spiga O, Ciutti A, Di Maro D, Bracci L, Davit C, Temussi PA (2001) Probing the surface of a sweet protein: NMR study of MNEI with a paramagnetic probe. Protein Sci 10:1498–1507PubMedCrossRefGoogle Scholar
  77. Niggemann B, Binder C, Dupont C, Hadji S, Arvola T, Isolauri E (2001) Prospective, controlled, multi-center study on the effect of an amino-acid-based formula in infants with cow’s milk allergy/intolerance and atopic dermatitis. Pediatr Allergy Immunol 12:78–82PubMedCrossRefGoogle Scholar
  78. Ninomiya K (1998) Natural occurrence. Food Rev Int 14:177–211CrossRefGoogle Scholar
  79. Ninomiya Y, Funakoshi M (1989) Peripheral neural basis for behavioral discrimination between glutamate and the four basic tastes substances in mice. Comp Biochem Physiol A Comp Physiol 92:371–376PubMedCrossRefGoogle Scholar
  80. Ninomiya Y, Tonosaki K, Funakoshi M (1982) Gustatory neural response in the mouse. Brain Res 2:370–373CrossRefGoogle Scholar
  81. Ninomiya K, Kitamura S, Saiga-Egusa A, Ozawa S, Hirose Y, Kagemori T, Moriki A, Tanaka T, Nishimura T (2010) Changes in free amino acids during heating bouillon prepared at different temperatures. J Home Econ Jpn 61:765–773Google Scholar
  82. Ohsu T, Amino Y, Nagasaki H, Yamanaka T, Takeshita S, Hatanaka T, Maruyama Y, Miyamura N, Eto Y (2010) Involvement of the calcium-sensing receptor in human taste perception. J Biol Chem 2:1016–1022CrossRefGoogle Scholar
  83. Oruna-Concha MJ, Methven L, Blumenthal H, Young C, Mottran DS (2007) Differences in glutamic acid and 5′-ribonucleotide contents between flesh and pulp of tomatoes and the relationship with umami taste. J Agric Food Chem 55:5776–5780PubMedCrossRefGoogle Scholar
  84. Pepino Y, Finkbeiner S, Beauchamp G, Mennella J (2010) Obese women have lower monosodium glutamate taste sensitivity and prefer higher concentrations than do normal-weight women. Obesity 18:959–965PubMedCrossRefGoogle Scholar
  85. Perez CA, Huang L, Rong M, Kozak JA, Preuss AK, Zhang H, Max M, Margolskee RF (2002) A transient potential channel expressed in taste receptor cells. Nat Neurosci 5:1169–1176PubMedCrossRefGoogle Scholar
  86. Pi M, Quarles LD (2012) Multiligand specificity and wide tissue expression of GPRC6A reveals new endocrine networks. Endocrinology 5:2062–2069CrossRefGoogle Scholar
  87. Pi M, Faber P, Ekema G, Jackson PD, Ting A, Wang N, Fontilla-Poole M, Mays RW, Brunden KR, Harrington JJ, Quarles LD (2005) Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J Biol Chem 280:40201–40209PubMedCrossRefGoogle Scholar
  88. Pi M, Parrill AL, Quarles LD (2010) GPRC6A mediates the non-genomic effects of steroids. J Biol Chem 285:39953–39964PubMedCrossRefGoogle Scholar
  89. Power MK, Schulkin J (2008) Anticipatory physiological regulation in feeding biology: cephalic phase responses. Appetite 50:194–206PubMedCrossRefGoogle Scholar
  90. Rasoamanana R, Darcel N, Fromentin G, Tome D (2012) Nutrient sensing and signalling by the gut. Proc Nutr Soc. doi: 10.1017/S0029665112000110 PubMedGoogle Scholar
  91. Ray JM, Squires PE, Curtis SB, Meloche MR, Buchan AM (1997) Expression of the calcium-sensing receptor on human antral gastrin cells in culture. J Clin Invest 99:2328–2333PubMedCrossRefGoogle Scholar
  92. Reeds P, Garlick P (2003) Protein and amino acid requirement and the composition of complementary foods. J Nutr 133:2953S–2961SPubMedGoogle Scholar
  93. Richardson CT, Walsh JH, Hicks MI, Fordtran JS (1976) Studies on the mechanisms of food-stimulated gastric acid secretion in normal human subjects. J Clin Invest 58:623–631PubMedCrossRefGoogle Scholar
  94. Roper SD (2007) Signal transduction and information processing in mammalian taste buds. Pflugers Arch 5:759–776CrossRefGoogle Scholar
  95. Roura E, Humphrey B, Klasing K, Swart M (2011) Is the pig a good umami sensing model for humans? A comparative taste receptor study. Flavour Frag J 26:282–285CrossRefGoogle Scholar
  96. Saffouri B, DuVal JW, Makhlouf GM (1984) Stimulation of gastrin secretion in vitro by intraluminal chemicals: regulation by intramural cholinergic and noncholinergic neurons. Gastroenterology 87:557–561PubMedGoogle Scholar
  97. Saidak Z, Brazier M, Kamel S, Mentaverri R (2009) Agonists and allosteric modulators of the calcium-sensing receptor and their therapeutic applications. Mol Pharmacol 6:1131–1144CrossRefGoogle Scholar
  98. Sampath-Kumar PS, Fruton JS (1974) Studies on the extend active sites of acid proteases. Proc Natl Acad Sci USA 71:1070–1072PubMedCrossRefGoogle Scholar
  99. San Gabriel AM, Maekawa T, Uneyama H, Yoshie S, Torii K (2007) mGluR1 in the fundic glands of rat stomach. FEBS Lett 581:1119–1123PubMedCrossRefGoogle Scholar
  100. San Gabriel A, Uneyama H, Maekawa T, Torii K (2009a) The calcium-sensing receptor in taste tissue. Biochem Biophys Res Commun 378:414–418PubMedCrossRefGoogle Scholar
  101. San Gabriel A, Maekawa T, Uneyama H, Torii K (2009b) Metabotropic glutamate receptor type 1 in taste tissue. Am J Clin Nutr 3:743S–746SCrossRefGoogle Scholar
  102. Sarwar G, Botting HG, Davis TA, Darling P, Pencharz PB (1998) Free amino acids in milk of human subjects, other primates and non-primates. Br J Nutr 79:129–131PubMedCrossRefGoogle Scholar
  103. Sasano T, Satoh-Kuriwada S, Shoji N, Kawai M, Sekine-Hayakawa Y, Uneyama H (2010) Application of umami taste stimulation to remedy hypogeusia based on reflex salivation. Biol Pharm Bull 33:1791–1795PubMedCrossRefGoogle Scholar
  104. Sbarbati A, Osculati F (2005) The taste cell-related diffuse chemosensory system. Prog Neurobiol 75:295–307PubMedCrossRefGoogle Scholar
  105. Schiffman SS, Graham BG (2000) Taste and smell perception affect appetite and immunity in the elderly. Eur J Clin Nutr 54(Suppl3):S54–S63PubMedCrossRefGoogle Scholar
  106. Schiffman S, Hornack K, Reilly D (1979) Increased taste thresholds of amino acids with age. Am J Clin Nutr 32:1622–1627PubMedGoogle Scholar
  107. Schubert ML, Jong MJ, Makhlouf GM (1991) Bombesin/GRP-stimulated somatostatin secretion is mediated by gastrin in the antrum and intrinsic neurons in the fundus. Am J Physiol 261:G885–G889PubMedGoogle Scholar
  108. Shigemura N, Ohkuri T, Sadamitsu C, Yasumatsu K, Yoshida R, Beauchamp GK, Bachmanov AA, Ninomiya Y (2008) Amiloride-sensitive NaCl taste responses are associated with genetic variation of ENaC alpha-subunit in mice. Am J Physiol Regul Integr Comp Physiol 1:R66–R75Google Scholar
  109. Shimizu M (2010) Interaction between food substances and the intestinal epithelium. Biosci Biotechnol Biochem 74:232–241PubMedCrossRefGoogle Scholar
  110. Shubert ML (2009) Gastric exocrine and endocrine secretion. Curr Opin Gastroenterol 25:529–536CrossRefGoogle Scholar
  111. Silk DB (1980) Digestion and absorption of dietary protein in man. Proc Nutr Soc 39:61–70PubMedCrossRefGoogle Scholar
  112. Sorrequieta A, Ferraro G, Boggio SB, Valle EM (2010) Free amino acid production during tomato fruit ripening: a focus on l-glutamate. Amino acids 38:1523–1532PubMedCrossRefGoogle Scholar
  113. Steinert RE, Beglinger C (2011) Nutrient sensing in the gut: interactions between chemosensory cells, visceral afferents and the secretion of satiation peptides. Physiol Behav 105:62–70PubMedCrossRefGoogle Scholar
  114. Stewart JE, Feinte-Bisset C, Golding M, Delahunty C, Clifton PM, Keast RS (2010) Oral Sensitivity to fatty acids, food consumption and BMI in human subjects. Br J Nutr 104:145–152PubMedCrossRefGoogle Scholar
  115. Strunz UT, Walsh JH, Grossman MI (1978) Stimulation of gastrin release in dogs by individual amino acids. Proc Soc Exp Bio Med 157:440–441CrossRefGoogle Scholar
  116. Svanberg U, Gebre-Medhin M, Ljungqvist B, Olsson M (1977) Breast milk composition in Ethiopian and Swedish mothers. III Amino acids and other nitrogenous substances. Am J Clin Nutr 30:499–507PubMedGoogle Scholar
  117. Taylor IL, Byrne WJ, Christie DL, Ament ME, Walsh JH (1982) Effect of individual l-amino acids on gastric acid secretion and serum gastrin and pancreatic polypeptide release in humans. Gastroenterology 83(1 Pt 2):273–278PubMedGoogle Scholar
  118. Tomoe M, Inoue Y, Sanbe A, Toyama K, Yamamoto S, Komatsu T (2009) Clinical trial of glutamate for the improvement of nutrition and health in the elderly. Ann N Y Acad Sci 1170:82–86PubMedCrossRefGoogle Scholar
  119. Tordoff MG, Shao H, Alarcon LK, Margolskee RF, Mosinger B, Bachmanov AA, Reed DR, McCaughey S (2008) Involvement of T1R3 in calcium–magnesium taste. Physiol Genomics 3:338–348Google Scholar
  120. Toyono T, Seta Y, Kataoka S, Kawano S, Shigemoto R, Toyoshima K (2003) Expression of metabotropic glutamate receptor group I in rat gustatory papillae. Cell Tissue Res 2:29–35CrossRefGoogle Scholar
  121. Toyono T, Kataoka S, Seta Y, Shigemoto R, Toyoshima K (2007) Expression of group II metabotropic glutamate receptors in rat gustatory papillae. Cell Tissue Res 1:57–63CrossRefGoogle Scholar
  122. Ugawa S, Yamamoto T, Ueda T, Ishida Y, Inagaki A, Nishigaki M, Shimada S (2003) Amiloride-insensitive currents of the acid-sensing ion channel-2a (ASIC2a)/ASIC2b heteromeric sour-taste receptor channel. J Nuerosci 9:3616–3622Google Scholar
  123. Uneyama H, Nijjima A, San Gabriel A, Torii K (2006) Luminal amino acid sensing in the rat gastric mucosa. Am J Physiol Gastrointest Liver Physiol 6:G1163–G1170CrossRefGoogle Scholar
  124. Voynick IM, Fruton JS (1971) The comparative specificity of acid proteases. Proc Natl Acad Sci USA 68:257–259PubMedCrossRefGoogle Scholar
  125. Wang M, Yao Y, Kuang D, Hampson DR (2006) Activation of family C G-protein-coupled receptors by the tripeptide glutathione. J Biol Chem 13:8864–8870CrossRefGoogle Scholar
  126. Wellendorph P, Hansen KB, Balsgarrd A, Greenwood JR, Egebjerg J, Brauner-Osborne H (2005) Deorphanization of GPRC6A: a promiscuous L-alpha-amino acid receptor with preference for basic amino acids. Mol Pharmacol 67:589–597PubMedCrossRefGoogle Scholar
  127. Wellendorph P, Burhenne N, Christiansen B, Walter B, Schmale H, Brauner-Osborne H (2007) The rat GPRC6A: cloning and characterization. Gene 396:257–267PubMedCrossRefGoogle Scholar
  128. Wellendorph P, Johansen LD, Brauner-Osborne H (2009) Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients. Mol Pharmacol 3:453–465CrossRefGoogle Scholar
  129. Wu G (2010) Functional amino acids in growth, reproduction, and health. Adv Nutr 1:31–37PubMedCrossRefGoogle Scholar
  130. Wu G, Knabe DA (1994) Free and protein-bound amino acids in sow’s colostrum and milk. J Nutr 124:415–424Google Scholar
  131. Xu H, Staszewski L, Tang H, Adler E, Zoller M, Li X (2004) Different functional roles of T1R subunits in the heteromeric taste receptors. Proc Natl Acad Sci USA 101:14258–14263PubMedCrossRefGoogle Scholar
  132. Yamaguchi S (1998) Basic properties of umami and its effects on food flavors. Food Rev Int 14(2 and 3):139–176Google Scholar
  133. Yasumatsu K, Horio N, Murata Y, Shirosaki S, Ohkuri T, Yoshida R, Ninomiya Y (2009) Multiple receptors underlie glutamate taste responses in mice. Am J Clin Nutr 3:747S–752SCrossRefGoogle Scholar
  134. Yoshida Y (1998) Umami taste and traditional seasonings. Food Rev Int 14:213–246CrossRefGoogle Scholar
  135. Yoshida R, Horio N, Murata Y, Yasumatsu K, Shigemura N, Ninomiya Y (2009a) NaCl responsive taste cells in mouse fungiform taste buds. Neuroscience 2:795–803CrossRefGoogle Scholar
  136. Yoshida R, Miyauchi A, Yasuo T, Jyotaki M, Murata Y, Yasumatsu K, Shigemura N, Yanagawa Y, Obata K, Ueno H, Margolskee RF, Ninomiya Y (2009b) Discrimination of taste qualities among mouse fungiform taste buds cells. J Physiol Pt 18:4425–4439CrossRefGoogle Scholar
  137. Zhang Y, Hoon MA, Chandrashaker J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ (2003) Coding of sweet, bitter, and umami taste: different receptor cells sharing similar signaling pathways. Cell 112:293–301PubMedCrossRefGoogle Scholar
  138. Zolotarev V, Khropycheva R, Uneyama H, Torii K (2009) Effect of free dietary glutamate on gastric secretion in dogs. Ann N Y Acad Sci 1170:87–90PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Scientific Affairs, Communications DepartmentAjinomoto Co., Inc.TokyoJapan
  2. 2.Institute for InnovationAjinomoto Co., Inc.KawasakiJapan

Personalised recommendations