Advertisement

Amino Acids

, Volume 44, Issue 2, pp 543–553 | Cite as

Evaluation of a technetium-99m labeled bombesin homodimer for GRPR imaging in prostate cancer

  • Zilin Yu
  • Giuseppe Carlucci
  • Hildo J. K. Ananias
  • Rudi A. J. O. Dierckx
  • Shuang Liu
  • Wijnand Helfrich
  • Fan Wang
  • Igle J. de Jong
  • Philip H. Elsinga
Original Article

Abstract

Multimerization of peptides can improve the binding characteristics of the tracer by increasing local ligand concentration and decreasing dissociation kinetics. In this study, a new bombesin homodimer was developed based on an ε-aminocaproic acid-bombesin(7–14) (Aca-bombesin(7–14)) fragment, which has been studied for targeting the gastrin-releasing peptide receptor (GRPR) in prostate cancer. The bombesin homodimer was conjugated to 6-hydrazinopyridine-3-carboxylic acid (HYNIC) and labeled with 99mTc for SPECT imaging. The in vitro binding affinity to GRPR, cell uptake, internalization and efflux kinetics of the radiolabeled bombesin dimer were investigated in the GRPR-expressing human prostate cancer cell line PC-3. Biodistribution and the GRPR-targeting potential were evaluated in PC-3 tumor-bearing athymic nude mice. When compared with the bombesin monomer, the binding affinity of the bombesin dimer is about ten times lower. However, the 99mTc labeled bombesin dimer showed a three times higher cellular uptake at 4 h after incubation, but similar internalization and efflux characters in vitro. Tumor uptake and in vivo pharmacokinetics in PC-3 tumor-bearing mice were comparable. The tumor was visible on the dynamic images in the first hour and could be clearly distinguished from non-targeted tissues on the static images after 4 h. The GRPR-targeting ability of the 99mTc labeled bombesin dimer was proven in vitro and in vivo. This bombesin homodimer provides a good starting point for further studies on enhancing the tumor targeting activity of bombesin multimers.

Keywords

GRPR Bombesin homodimer Radiolabeled Imaging Prostate cancer PC-3 99mTc HYNIC SPECT 

Notes

Acknowledgments

This work was made possible by a financial contribution from CTMM, project PCMM, project number 03O-203. We thank Chao Wu for technical assistance on microSPECT images reconstruction and D.F. Samplonius for technical assistance on cell culturing, and J. W. A. Sijbesma for assisting with animal experiments. All animal experiments were approved by the local animal welfare committee in accordance with the Dutch legislation and carried out in accordance with their guidelines.

References

  1. Ait-Mohand S, Fournier P, Dumulon-Perreault V, Kiefer GE, Jurek P, Ferreira CL, Benard F, Guerin B (2011) Evaluation of 64Cu-labeled bifunctional chelate–bombesin conjugates. Bioconjug Chem 22(8):1729–1735. doi: 10.1021/bc2002665 PubMedCrossRefGoogle Scholar
  2. Ananias HJ, Yu Z, Dierckx RA, van der Wiele C, Helfrich W, Wang F, Yan Y, Chen X, de Jong IJ, Elsinga PH (2011) (99m)technetium-HYNIC(tricine/TPPTS)-Aca-bombesin(7–14) as a targeted imaging agent with microSPECT in a PC-3 prostate cancer xenograft model. Mol Pharm 8(4):1165–1173. doi: 10.1021/mp200014h PubMedCrossRefGoogle Scholar
  3. Aprikian AG, Cordon-Cardo C, Fair WR, Reuter VE (1993) Characterization of neuroendocrine differentiation in human benign prostate and prostatic adenocarcinoma. Cancer 71(12):3952–3965PubMedCrossRefGoogle Scholar
  4. Chang E, Liu S, Gowrishankar G, Yaghoubi S, Wedgeworth JP, Chin F, Berndorff D, Gekeler V, Gambhir SS, Cheng Z (2011) Reproducibility study of [(18)F]FPP(RGD)2 uptake in murine models of human tumor xenografts. Eur J Nucl Med Mol Imaging 38(4):722–730. doi: 10.1007/s00259-010-1672-1 PubMedCrossRefGoogle Scholar
  5. Dijkgraaf I, Kruijtzer JA, Liu S, Soede AC, Oyen WJ, Corstens FH, Liskamp RM, Boerman OC (2007) Improved targeting of the alpha(v)beta (3) integrin by multimerisation of RGD peptides. Eur J Nucl Med Mol Imaging 34(2):267–273. doi: 10.1007/s00259-006-0180-9 PubMedCrossRefGoogle Scholar
  6. Dijkgraaf I, Yim CB, Franssen GM, Schuit RC, Luurtsema G, Liu S, Oyen WJ, Boerman OC (2011) PET imaging of alphavbeta integrin expression in tumours with Ga-labelled mono-, di- and tetrameric RGD peptides. Eur J Nucl Med Mol Imaging 38(1):128–137. doi: 10.1007/s00259-010-1615-x PubMedCrossRefGoogle Scholar
  7. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247. doi: 10.1016/j.ejca.2008.10.026 PubMedCrossRefGoogle Scholar
  8. Erspamer V, Erpamer GF, Inselvini M (1970) Some pharmacological actions of alytesin and bombesin. J Pharm Pharmacol 22(11):875–876PubMedCrossRefGoogle Scholar
  9. Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P (2007) Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 18(3):581–592. doi: 10.1093/annonc/mdl498 PubMedCrossRefGoogle Scholar
  10. Handl HL, Vagner J, Yamamura HI, Hruby VJ, Gillies RJ (2004) Lanthanide-based time-resolved fluorescence of in cyto ligand–receptor interactions. Anal Biochem 330(2):242–250. doi: 10.1016/j.ab.2004.04.012 PubMedCrossRefGoogle Scholar
  11. Harris TD, Sworin M, Williams N, Rajopadhye M, Damphousse PR, Glowacka D, Poirier MJ, Yu K (1999) Synthesis of stable hydrazones of a hydrazinonicotinyl-modified peptide for the preparation of 99m Tc-labeled radiopharmaceuticals. Bioconjug Chem 10(5):808–814 pii:bc9900237PubMedCrossRefGoogle Scholar
  12. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687 pii: S0092867402009716PubMedCrossRefGoogle Scholar
  13. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics. CA Cancer J Clin 58(2):71–96. doi: 10.3322/CA.2007.0010 PubMedCrossRefGoogle Scholar
  14. Joosten JA, Loimaranta V, Appeldoorn CC, Haataja S, El Maate FA, Liskamp RM, Finne J, Pieters RJ (2004) Inhibition of Streptococcus suis adhesion by dendritic galabiose compounds at low nanomolar concentration. J Med Chem 47(26):6499–6508. doi: 10.1021/jm049476+ PubMedCrossRefGoogle Scholar
  15. Kramer RH, Karpen JW (1998) Spanning binding sites on allosteric proteins with polymer-linked ligand dimers. Nature 395(6703):710–713. doi: 10.1038/27227 PubMedCrossRefGoogle Scholar
  16. Li ZB, Wu Z, Chen K, Ryu EK, Chen X (2008) 18F-labeled BBN-RGD heterodimer for prostate cancer imaging. J Nucl Med 49(3):453–461. doi: 10.2967/jnumed.107.048009 PubMedCrossRefGoogle Scholar
  17. Liu S, Kim YS, Hsieh WY, Gupta Sreerama S (2008) Coligand effects on the solution stability, biodistribution and metabolism of the (99m)Tc-labeled cyclic RGDfK tetramer. Nucl Med Biol 35(1):111–121. doi: 10.1016/j.nucmedbio.2007.08.006 PubMedCrossRefGoogle Scholar
  18. Liu Z, Li ZB, Cao Q, Liu S, Wang F, Chen X (2009a) Small-animal PET of tumors with (64)Cu-labeled RGD–bombesin heterodimer. J Nucl Med 50(7):1168–1177. doi: 10.2967/jnumed.108.061739 PubMedCrossRefGoogle Scholar
  19. Liu Z, Niu G, Wang F, Chen X (2009b) (68)Ga-labeled NOTA-RGD–BBN peptide for dual integrin and GRPR-targeted tumor imaging. Eur J Nucl Med Mol Imaging 36(9):1483–1494. doi: 10.1007/s00259-009-1123-z PubMedCrossRefGoogle Scholar
  20. Liu Z, Yan Y, Chin FT, Wang F, Chen X (2009c) Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD–bombesin heterodimer 18F-FB-PEG3-Glu-RGD–BBN. J Med Chem 52(2):425–432. doi: 10.1021/jm801285t PubMedCrossRefGoogle Scholar
  21. Liu Z, Yan Y, Liu S, Wang F, Chen X (2009d) (18)F, (64)Cu, and (68)Ga labeled RGD–bombesin heterodimeric peptides for PET imaging of breast cancer. Bioconjug Chem 20(5):1016–1025. doi: 10.1021/bc9000245 PubMedCrossRefGoogle Scholar
  22. Liu Z, Shi J, Jia B, Yu Z, Liu Y, Zhao H, Li F, Tian J, Chen X, Liu S, Wang F (2011) Two Y-labeled multimeric RGD peptides RGD4 and 3PRGD2 for integrin targeted radionuclide therapy. Mol Pharm 8(2):591–599. doi: 10.1021/mp100403y PubMedCrossRefGoogle Scholar
  23. McDonald TJ, Jornvall H, Nilsson G, Vagne M, Ghatei M, Bloom SR, Mutt V (1979) Characterization of a gastrin releasing peptide from porcine non-antral gastric tissue. Biochem Biophys Res Commun 90(1):227–233 pii:0006-291X(79)91614-0PubMedCrossRefGoogle Scholar
  24. Mulder A, Huskens J, Reinhoudt DN (2004) Multivalency in supramolecular chemistry and nanofabrication. Org Biomol Chem 2(23):3409–3424. doi: 10.1039/b413971b PubMedCrossRefGoogle Scholar
  25. Price J, Penman E, Wass JA, Rees LH (1984) Bombesin-like immunoreactivity in human gastrointestinal tract. Regul Pept 9(1–2):1–10PubMedCrossRefGoogle Scholar
  26. Schroeder RP, Muller C, Reneman S, Melis ML, Breeman WA, de Blois E, Bangma CH, Krenning EP, van Weerden WM, de Jong M (2010) A standardised study to compare prostate cancer targeting efficacy of five radiolabelled bombesin analogues. Eur J Nucl Med Mol Imaging 37(7):1386–1396. doi: 10.1007/s00259-010-1388-2 PubMedCrossRefGoogle Scholar
  27. Shi J, Jia B, Liu Z, Yang Z, Yu Z, Chen K, Chen X, Liu S, Wang F (2008) 99mTc-labeled bombesin(7–14)NH2 with favorable properties for SPECT imaging of colon cancer. Bioconjug Chem 19(6):1170–1178. doi: 10.1021/bc700471z PubMedCrossRefGoogle Scholar
  28. Shi J, Kim YS, Zhai S, Liu Z, Chen X, Liu S (2009) Improving tumor uptake and pharmacokinetics of (64)Cu-labeled cyclic RGD peptide dimers with Gly(3) and PEG(4) linkers. Bioconjug Chem 20(4):750–759. doi: 10.1021/bc800455p PubMedCrossRefGoogle Scholar
  29. Spindel ER, Chin WW, Price J, Rees LH, Besser GM, Habener JF (1984) Cloning and characterization of cDNAs encoding human gastrin-releasing peptide. Proc Natl Acad Sci USA 81(18):5699–5703PubMedCrossRefGoogle Scholar
  30. Track NS, Cutz E (1982) Bombesin-like immunoreactivity in developing human lung. Life Sci 30(18):1553–1556PubMedCrossRefGoogle Scholar
  31. Vance D, Shah M, Joshi A, Kane RS (2008) Polyvalency: a promising strategy for drug design. Biotechnol Bioeng 101(3):429–434. doi: 10.1002/bit.22056 PubMedCrossRefGoogle Scholar
  32. Xiao D, Wang J, Hampton LL, Weber HC (2001) The human gastrin-releasing peptide receptor gene structure, its tissue expression and promoter. Gene 264(1):95–103. doi: 10.1016/S0378-1119(00)00596-5 PubMedCrossRefGoogle Scholar
  33. Zhang X, Cai W, Cao F, Schreibmann E, Wu Y, Wu JC, Xing L, Chen X (2006) 18F-labeled bombesin analogs for targeting GRP receptor-expressing prostate cancer. J Nucl Med 47(3):492–501PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Zilin Yu
    • 1
    • 2
  • Giuseppe Carlucci
    • 1
    • 2
  • Hildo J. K. Ananias
    • 2
  • Rudi A. J. O. Dierckx
    • 1
  • Shuang Liu
    • 4
  • Wijnand Helfrich
    • 3
  • Fan Wang
    • 5
  • Igle J. de Jong
    • 2
  • Philip H. Elsinga
    • 1
  1. 1.Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
  2. 2.Department of UrologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
  3. 3.Department of Surgery, Translational Surgical OncologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
  4. 4.School of Health SciencesPurdue UniversityWest LafayetteUSA
  5. 5.Medical Isotopes Research CenterPeking UniversityBeijingChina

Personalised recommendations