Amino Acids

, Volume 43, Issue 5, pp 1873–1886 | Cite as

d-Aspartate acts as a signaling molecule in nervous and neuroendocrine systems

Invited Review

Abstract

d-Aspartate (d-Asp) is an endogenous amino acid in the central nervous and reproductive systems of vertebrates and invertebrates. High concentrations of d-Asp are found in distinct anatomical locations, suggesting that it has specific physiological roles in animals. Many of the characteristics of d-Asp have been documented, including its tissue and cellular distribution, formation and degradation, as well as the responses elicited by d-Asp application. d-Asp performs important roles related to nervous system development and hormone regulation; in addition, it appears to act as a cell-to-cell signaling molecule. Recent studies have shown that d-Asp fulfills many, if not all, of the definitions of a classical neurotransmitter—that the molecule’s biosynthesis, degradation, uptake, and release take place within the presynaptic neuron, and that it triggers a response in the postsynaptic neuron after its release. Accumulating evidence suggests that these criteria are met by a heterogeneous distribution of enzymes for d-Asp’s biosynthesis and degradation, an appropriate uptake mechanism, localization within synaptic vesicles, and a postsynaptic response via an ionotropic receptor. Although d-Asp receptors remain to be characterized, the postsynaptic response of d-Asp has been studied and several l-glutamate receptors are known to respond to d-Asp. In this review, we discuss the current status of research on d-Asp in neuronal and neuroendocrine systems, and highlight results that support d-Asp’s role as a signaling molecule.

Keywords

d-Aspartate d-Amino acids Nervous system Neurotransmitter Endocrine gland 

References

  1. Abe K, Takahashi S, Muroki Y, Kera Y, Yamada RH (2006) Cloning and expression of the pyridoxal 5′-phosphate-dependent aspartate racemase gene from the bivalve mollusk Scapharca broughtonii and characterization of the recombinant enzyme. J Biochem 139(2):235–244. doi:10.1093/jb/mvj028 PubMedGoogle Scholar
  2. Adachi M, Koyama H, Long ZQ, Sekine M, Furuchi T, Imai K, Nimura N, Shimamoto K, Nakajima T, Homma H (2004) l-Glutamate in the extracellular space regulates endogenous d-aspartate homeostasis in rat pheochromocytoma MPT1 cells. Arch Biochem Biophys 424(1):89–96. doi:10.1016/j.abb.2004.01.016 PubMedGoogle Scholar
  3. Assisi L, Botte V, D’Aniello A, Di Fiore MM (2001) Enhancement of aromatase activity by d-aspartic acid in the ovary of the lizard Podarcis s. sicula. Reproduction 121(5):803–808. doi:10.1530/rep.0.1210803 PubMedGoogle Scholar
  4. Bharathi, Jagannath Rao KS, Stein R (2003) First evidence on induced topological changes in supercoiled DNA by an aluminium d-aspartate complex. J Biol Inorg Chem 8(8):823–830. doi:10.1007/s00775-003-0484-1 PubMedGoogle Scholar
  5. Brown ER, Piscopo S, Chun JT, Francone M, Mirabile I, D’Aniello A (2007) Modulation of an AMPA-like glutamate receptor (SqGluR) gating by l- and d-aspartic acids. Amino Acids 32(1):53–57. doi:10.1007/s00726-006-0349-3 PubMedGoogle Scholar
  6. Carlson SL, Fieber LA (2011) Physiological evidence that d-aspartate activates a current distinct from ionotropic glutamate receptor currents in Aplysia californica neurons. J Neurophysiol 106(4):1629–1636. doi:10.1152/jn.00403.2011 PubMedGoogle Scholar
  7. Cousin MA, Hurst H, Nicholls DG (1997) Presynaptic calcium channels and field-evoked transmitter exocytosis from cultured cerebellar granule cells. Neuroscience 81(1):151–161. doi:10.1016/S0306-4522(97)00047-X PubMedGoogle Scholar
  8. D’Aniello A, Giuditta A (1977) Identification of d-aspartic acid in the brain of Octopus vulgaris Lam. J Neurochem 29(6):1053–1057. doi:10.1111/j.1471-4159.1977.tb06508.x PubMedGoogle Scholar
  9. D’Aniello A, Giuditta A (1978) Presence of d-aspartate in squid axoplasm and in other regions of the cephalopod nervous system. J Neurochem 31(4):1107–1108. doi:10.1111/j.1471-4159.1978.tb00155.x PubMedGoogle Scholar
  10. D’Aniello A, Nardi G, Vetere A, Ferguson GP (1993a) Occurrence of free d-aspartic acid in the circumsoesophageal ganglia of Aplysia fasciata. Life Sci 52(8):733–736. doi:10.1016/0024-3205(93)90235-u PubMedGoogle Scholar
  11. D’Aniello A, Vetere A, Petrucelli L (1993b) Further study on the specificity of d-amino acid oxidase and d-aspartate oxidase and time course for complete oxidation of d-amino acid. Comp Biochem Physiol B Biochem Mol Biol 105(3–4):731–734. doi:10.1016/0305-0491(93)90113-J Google Scholar
  12. D’Aniello A, Dicosmo A, Dicristo C, Fisher G (1995a) d-Aspartate in the male and female reproductive system of Octopus vulgaris lam. Gen Comp Endocrinol 100(1):69–72. doi:10.1006/gcen.1995.1134 PubMedGoogle Scholar
  13. D’Aniello A, Nardi G, DeSantis A, Vetere A, di Cosmo A, Marchelli R, Dossena A, Fisher G (1995b) Free l-amino acids and d-aspartate content in the nervous system of Cephalopoda. A comparative study. Comp Biochem Physiol B Biochem Mol Biol 112(4):661–666. doi:10.1016/0305-0491(95)00227-8 Google Scholar
  14. D’Aniello A, DiCosmo A, DiCristo C, Annunziato L, Petrucelli L, Fisher G (1996) Involvement of d-Aspartic acid in the synthesis of testosterone in rat testes. Life Sci 59(2):97–104. doi:10.1016/0024-3205(96)00266-4 PubMedGoogle Scholar
  15. D’Aniello A, Di Fiore MM, Fisher GH, Milone A, Seleni A, D’Aniello S, Perna AF, Ingrosso D (2000a) Occurrence of d-aspartic acid and N-methyl-d-aspartic acid in rat neuroendocrine tissues and their role in the modulation of luteinizing hormone and growth hormone release. FASEB J 14(5):699–714PubMedGoogle Scholar
  16. D’Aniello A, Spinelli P, De Simone A, D’Aniello S, Branno M, Aniello F, Fisher GH, Di Fiore MM, Rastogi RK (2003) Occurrence and neuroendocrine role of d-aspartic acid and N-methyl-d-aspartic acid in Ciona intestinalis. FEBS Lett 552(2–3):193–198. doi:10.1016/s0014-5793(03)00921-9 PubMedGoogle Scholar
  17. D’Aniello S, Spinelli P, Ferrandino G, Peterson K, Tsesarskia M, Fisher G, D’Aniello A (2005a) Cephalopod vision involves dicarboxylic amino acids: d-aspartate, l-aspartate and l-glutamate. Biochem J 386:331–340. doi:10.1042/bj20041070 PubMedGoogle Scholar
  18. D’Aniello G, Grieco N, Di Filippo MA, Cappiello F, Topo E, D’Aniello E, Ronsini S (2007a) Reproductive implication of d-aspartic acid in human pre-ovulatory follicular fluid. Hum Reprod 22(12):3178–3183. doi:10.1093/humrep/dem328 PubMedGoogle Scholar
  19. D’Aniello S, Fisher GH, Topo E, Ferrandino G, Garcia-Fernandez J, D’Aniello A (2007b) N-methyl-d-aspartic acid (NMDA) in the nervous system of the amphioxus Branchiostoma lanceolatum. BMC Neurosci 8:109. doi:10910.1186/1471-2202-8-109 PubMedGoogle Scholar
  20. D’Aniello A (2007) d-Aspartic acid: an endogenous amino acid with an important neuroendocrine role. Brain Res Rev 53(2):215–234. doi:10.1016/j.brainresrev.2006.08.005 PubMedGoogle Scholar
  21. D’Aniello S, Garcia-Fernandez J (2007) d-Aspartic acid and l-amino acids in the neural system of the amphioxus Branchiostoma lanceolatum. Amino Acids 32(1):21–26. doi:10.1007/s00726-006-0347-5 PubMedGoogle Scholar
  22. D’Aniello A, Donofrio G, Pischetola M, Daniello G, Vetere A, Petrucelli L, Fisher GH (1993c) Biological role of d-amino acid oxidase and d-aspartate oxidase. Effects of d-amino acids. J Biol Chem 268(36):26941–26949PubMedGoogle Scholar
  23. D’Aniello A, Lee JM, Petrucelli L, Di Fiore MM (1998) Regional decreases of free d-aspartate levels in Alzheimer’s disease. Neuroscience Lett 250(2):131–134. doi:10.1016/s0304-3940(98)00451-0 Google Scholar
  24. D’Aniello G, Tolino A, D’Aniello A, Errico F, Fisher GH, Di Fiore MM (2000b) The role of d-aspartic acid and N-methyl-d-aspartic acid in the regulation of prolactin release. Endocrinology 141(10):3862–3870. doi:10.1210/en.141.10.3862 PubMedGoogle Scholar
  25. D’Aniello G, Ronsini S, Guida F, Spinelli P, D’Aniello A (2005b) Occurrence of d-aspartic acid in human seminal plasma and spermatozoa: possible role in reproduction. Fertil Steril 84(5):1444–1449. doi:10.1016/j.fertnstert.2005.05.019 PubMedGoogle Scholar
  26. D’Aniello S, Somorjai I, Garcia-Fernandez J, Topo E, D’Aniello A (2011) d-Aspartic acid is a novel endogenous neurotransmitter. FASEB J 25(3):1014–1027. doi:10.1096/fj.10-168492 PubMedGoogle Scholar
  27. Davies LP, Johnston GAR (1976) Uptake and release of d-aspartate and l-aspartate by rat brain slices. J Neurochem 26(5):1007–1014. doi:10.1111/j.1471-4159.1976.tb06485.x PubMedGoogle Scholar
  28. Di Fiore MM, Assisi L, Botte V, D’Aniello A (1998) d-Aspartic acid is implicated in the control of testosterone production by the vertebrate gonad. Studies on the female green frog, Rana esculenta. J Endocrinol 157(2):199–207. doi:10.1677/joe.0.1570199 PubMedGoogle Scholar
  29. Dunlop DS, Neidle A, McHale D, Dunlop DM, Lajtha A (1986) The presence of free d-aspartic acid in rodents and man. Biochem Biophys Res Commun 141(1):27–32. doi:10.1016/s0006-291x(86)80329-1 PubMedGoogle Scholar
  30. Errico F, Nistico R, Palma G, Federici M, Affuso A, Brilli E, Topo E, Centonze D, Bernardi G, Bozzi Y, D’Aniello A, Di Lauro R, Mercuri NB, Usiello A (2008a) Increased levels of d-aspartate in the hippocampus enhance LTP but do not facilitate cognitive flexibility. Mol Cell Neurosci 37(2):236–246. doi:10.1016/j.mcn.2007.09.012 PubMedGoogle Scholar
  31. Errico F, Rossi S, Napolitano F, Catuogno V, Topo E, Fisone G, D’Aniello A, Centonze D, Usiello A (2008b) d-Aspartate prevents corticostriatal long-term depression and attenuates schizophrenia-like symptoms induced by amphetamine and MK-801. J Neurosci 28(41):10404–10414. doi:10.1523/jneurosci.1618-08.2008 PubMedGoogle Scholar
  32. Errico F, Bonito-Oliva A, Bagetta V, Vitucci D, Romano R, Zianni E, Napolitano F, Marinucci S, Di Luca M, Calabresi P, Fisone G, Carta M, Picconi B, Gardoni F, Usiello A (2011a) Higher free d-aspartate and N-methyl-d-aspartate levels prevent striatal depotentiation and anticipate l-DOPA-induced dyskinesia. Exp Neurol 232(2):240–250. doi:10.1016/j.expneurol.2011.09.013 PubMedGoogle Scholar
  33. Errico F, Nistico R, Napolitano F, Mazzola C, Astone D, Pisapia T, Giustizieri M, D’Aniello A, Mercuri NB, Usiello A (2011b) Increased d-aspartate brain content rescues hippocampal age-related synaptic plasticity deterioration of mice. Neurobiol Aging 32(12):2229–2243. doi:10.1016/j.neurobiolaging.2010.01.002 PubMedGoogle Scholar
  34. Fagg GE, Matus A (1984) Selective association of N-methyl aspartate and quisqualate types of l-glutamate receptor with brain postsynaptic densities. Proc Nat Acad Sci USA Biol Sci 81(21):6876–6880. doi:10.1073/pnas.81.21.6876 Google Scholar
  35. Fieber LA, Carlson SL, Capo TR, Schmale MC (2010) Changes in d-aspartate ion currents in the Aplysia nervous system with aging. Brain Res 1343:28–36. doi:10.1016/j.brainres.2010.05.001 PubMedGoogle Scholar
  36. Fisher GH, Daniello A, Vetere A, Padula L, Cusano GP, Man EH (1991) Free d-aspartate and d-alanine in normal and Alzheimer brain. Brain Res Bull 26(6):983–985. doi:10.1016/0361-9230(91)90266-m PubMedGoogle Scholar
  37. Fossat P, Turpin FR, Sacchi S, Dulong J, Shi T, Rivet JM, Sweedler JV, Pollegioni L, Millan MJ, Oliet SHR, Mothet JP (2012) Glial d-serine gates NMDA receptors at excitatory synapses in prefrontal cortex. Cereb Cortex 22(3):595–606. doi:10.1093/cercor/bhr130 PubMedGoogle Scholar
  38. Fuchs SA, Berger R, Klomp LWJ, de Koning TJ (2005) d-Amino acids in the central nervous system in health and disease. Mol Genet Metab 85(3):168–180. doi:10.1016/j.ymgme.2005.03.003 PubMedGoogle Scholar
  39. Fujii N (2002) d-Amino acids in living higher organisms. Origins Life Evol Biosphere 32(2):103–127. doi:10.1023/A:1016031014871 Google Scholar
  40. Funakoshi M, Sekine M, Katane M, Furuchi T, Yohda M, Yoshikawa T, Homma H (2008) Cloning and functional characterization of Arabidopsis thaliana d-amino acid aminotransferase—d-aspartate behavior during germination. FEBS J 275(6):1188–1200. doi:10.1111/j.1742-4658.2008.06279.x PubMedGoogle Scholar
  41. Gadea A, Lopez E, Lopez-Colome AM (2004) Glutamate-induced inhibition of d-aspartate uptake in Muller glia from the retina. Neurochem Res 29(1):295–304. doi:10.1023/B:NERE.0000010458.45085.e8 PubMedGoogle Scholar
  42. Gosling JP, Fottrell PF (1978) Purification and characterization of d-amino acid aminotransferase from Rhizobium japonicum. Biochim Biophys Acta Enzymol 522:84–95. doi:10.1016/0005-2744(78)90324-8 Google Scholar
  43. Hamase K, Homma H, Takigawa Y, Imai K (1999) Alteration in the d-amino acid content of the rat pineal gland under anesthesia. Amino Acids 17(3):277–283. doi:10.1007/bf01366926 PubMedGoogle Scholar
  44. Hamase K, Morikawa A, Zaitsu K (2002) d-Amino acids in mammals and their diagnostic value. J Chromatogr B Analyt Technol Biomed Life Sci 781(1–2):73–91. doi:10.1016/S1570-0232(02)00690-6 PubMedGoogle Scholar
  45. Han H, Miyoshi Y, Ueno K, Okamura C, Tojo Y, Mita M, Lindner W, Zaitsu K, Hamase K (2011) Simultaneous determination of d-aspartic acid and d-glutamic acid in rat tissues and physiological fluids using a multi-loop two-dimensional HPLC procedure. J Chromatogr B Analyt Technol Biomed Life Sci 879:3196–3202. doi:10.1016/j.jchromb.2011.01.023 PubMedGoogle Scholar
  46. Hashimoto A, Kumashiro S, Nishikawa T, Oka T, Takahashi K, Mito T, Takashima S, Doi N, Mizutani Y, Yamazaki T, Kaneko T, Ootomo E (1993) Embryonic development and postnatal changes in free d-aspartate and d-serine in the human prefrontal cortex. J Neurochem 61(1):348–351. doi:10.1111/j.1471-4159.1993.tb03575.x PubMedGoogle Scholar
  47. Hodges MR, Richerson GB (2008) Contributions of 5-HT neurons to respiratory control: neuromodulatory and trophic effects. Respir Physiol Neuro 164(1–2):222–232. doi:10.1016/j.resp.2008.05.014 Google Scholar
  48. Homma H (2007) Biochemistry of d-aspartate in mammalian cells. Amino Acids 32(1):3–11. doi:10.1007/s00726-006-0354-6 PubMedGoogle Scholar
  49. Huang AS, Beigneux A, Weil ZM, Kim PM, Molliver ME, Blackshaw S, Nelson RJ, Young SG, Snyder SH (2006) d-Aspartate regulates melanocortin formation and function: behavioral alterations in d-aspartate oxidase-deficient mice. J Neurosci 26(10):2814–2819. doi:10.1523/jneurosci.5060-05.2006 PubMedGoogle Scholar
  50. Imai K, Fukushima T, Hagiwara K, Santa T (1995) Occurrence of d-aspartic acid in rat brain pineal gland of d-aspartic acid in rat-brain pineal-gland. Biomed Chromatogr 9(2):106–109. doi:10.1002/bmc.1130090211 PubMedGoogle Scholar
  51. Imai K, Fukushima T, Santa T, Homma H, Sugihara J, Kodama H, Yoshikawa M (1997) Accumulation of radioactivity in rat brain and peripheral tissues including salivary gland after intravenous administration of C-14-d-aspartic acid. P Jpn Acad B-Phys 73(3):48–52. doi:10.2183/pjab.73.48 Google Scholar
  52. Junjaud G, Rouaud E, Turpin F, Mothet JP, Billard JM (2006) Age-related effects of the neuromodulator d-serine on neurotransmission and synaptic potentiation in the CA1 hippocampal area of the rat. J Neurochem 98(4):1159–1166. doi:10.1111/j.1471-4159.2006.03944.x PubMedGoogle Scholar
  53. Kanai Y, Hediger MA (1992) Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360(6403):467–471. doi:10.1038/360467a0 PubMedGoogle Scholar
  54. Kandel ER, Schwartz JH, Jessell TM (2000) Principles of Neural Science, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  55. Katane M, Homma H (2011) d-Aspartate-An important bioactive substance in mammals: a review from an analytical and biological point of view. J Chromatogr B Analyt Technol Biomed Life Sci 879(29):3108–3121. doi:10.1016/j.jchromb.2011.03.062 PubMedGoogle Scholar
  56. Katane M, Furuchi T, Sekine M, Homma H (2007a) Molecular cloning of a cDNA encoding mouse d-aspartate oxidase and functional characterization of its recombinant proteins by site-directed mutagenesis. Amino Acids 32(1):69–78. doi:10.1007/s00726-006-0350-x PubMedGoogle Scholar
  57. Katane M, Seida Y, Sekine M, Furuchi T, Homma H (2007b) Caenorhabditis elegans has two genes encoding functional d-aspartate oxidases. FEBS J 274(1):137–149. doi:10.1111/j.1742-4658.2006.05571.x PubMedGoogle Scholar
  58. Katane M, Saitoh Y, Seida Y, Sekine M, Furuchi T, Homma H (2010) Comparative characterization of three d-aspartate oxidases and one d-amino acid oxidase from Caenorhabditis elegans. Chem Biodivers 7(6):1424–1434. doi:10.1002/cbdv.200900294 PubMedGoogle Scholar
  59. Kim PM, Duan X, Huang AS, Liu CY, Ming GL, Song HJ, Snyder SH (2010) Aspartate racemase, generating neuronal d-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci USA 107(7):3175–3179. doi:10.1073/pnas.0914706107 PubMedGoogle Scholar
  60. Kimmich GA, Roussie J, Manglapus M, Randles J (2001) Characterization of Na+-coupled glutamate/aspartate transport by a rat brain astrocyte line expressing GLAST and EAAC1. J Membr Biol 182(1):17–30. doi:10.1007/s00232-001-0025-1 PubMedGoogle Scholar
  61. Kochhar S, Christen P (1992) Mechanism of racemization of amino acids by aspartate aminotransferase. Eur J Biochem 203(3):563–569. doi:10.1111/j.1432-1033.1992.tb16584.x PubMedGoogle Scholar
  62. Koyama H, Sekine M, Furuchi T, Katane M, Nimura N, Shimamoto K, Nakajima T, Homma H (2005) A novel l-glutamate transporter inhibitor reveals endogenous d-aspartate homeostasis in rat pheochromocytoma MPT1 cells. Life Sci 76(25):2933–2944. doi:10.1016/j.lfs.2004.10.057 PubMedGoogle Scholar
  63. Koyama H, Adachi M, Sekine M, Katane M, Furuchi T, Homma H (2006) Cytoplasmic localization and efflux of endogenous d-aspartate in pheochromocytoma 12 cells. Arch Biochem Biophys 446(2):131–139. doi:10.1016/j.abb.2005.12.008 PubMedGoogle Scholar
  64. Kuwahara O, Mitsumoto Y, Chiba K, Mohri T (1992) Characterization of d-aspartic acid uptake by rat hippocampal slices and effect of ischemic conditions. J Neurochem 59(2):616–621. doi:10.1111/j.1471-4159.1992.tb09414.x PubMedGoogle Scholar
  65. Lamont HC, Staudenbauer WL, Strominger JL (1972) Partial purification and characterization of an aspartate racemase from Streptococcus faecalis. J Biol Chem 247:5103–5106PubMedGoogle Scholar
  66. Lapainis T, Sweedler JV (2008) Contributions of capillary electrophoresis to neuroscience. J Chromatogr A 1184(1–2):144–158. doi:10.1016/j.chroma.2007.10.098 PubMedGoogle Scholar
  67. Lapainis T, Rubakhin SS, Sweedler JV (2009) Capillary electrophoresis with electrospray ionization mass spectrometric detection for single-cell metabolomics. Anal Chem 81(14):5858–5864. doi:10.1021/ac900936g PubMedGoogle Scholar
  68. Lau CL, Beart PM, O’Shea RD (2010) Transportable and non-transportable inhibitors of l-glutamate uptake produce astrocytic stellation and increase EAAT2 cell surface expression. Neurochem Res 35(5):735–742. doi:10.1007/s11064-010-0130-6 PubMedGoogle Scholar
  69. Lee JA, Homma H, Sakai K, Fukushima T, Santa T, Tashiro K, Iwatsubo T, Yoshikawa M, Imai K (1997) Immunohistochemical localization of d-aspartate in the rat pineal gland. Biochem Biophys Res Commun 231(2):505–508. doi:10.1006/bbrc.1996.5902 PubMedGoogle Scholar
  70. Lee JA, Homma H, Tashiro K, Iwatsubo T, Imai K (1999) d-Aspartate localization in the rat pituitary gland and retina. Brain Res 838(1–2):193–199. doi:10.1016/s0006-8993(99)01718-7 PubMedGoogle Scholar
  71. Liu YM, Schneider M, Sticha CM, Toyooka T, Sweedler JV (1998) Separation of amino acid and peptide stereoisomers by nonionic micelle-mediated capillary electrophoresis after chiral derivatization. J Chromatogr 800(2):345–354. doi:10.1016/s0021-9673(97)01137-0 Google Scholar
  72. Long ZQ, Homma H, Lee JA, Fukushima T, Santa T, Iwatsubo T, Yamada RH, Imai K (1998) Biosynthesis of d-aspartate in mammalian cells. FEBS Lett 434(3):231–235. doi:10.1016/s0014-5793(98)00986-7 PubMedGoogle Scholar
  73. Long Z, Lee JA, Okamoto T, Nimura N, Imai K, Homma H (2000) d-Aspartate in a prolactin-secreting clonal strain of rat pituitary tumor cells (GH(3)). Biochem Biophys Res Commun 276(3):1143–1147. doi:10.1006/bbrc.2000.3573 PubMedGoogle Scholar
  74. Long ZQ, Sekine M, Adachi M, Furuchi T, Imai K, Nimura N, Homma H (2002) Cell density inversely regulates d- and l-aspartate levels in rat pheochromocytoma MPT1 cells. Arch Biochem Biophys 404(1):92–97. doi:10.1016/s0003-9861(02)00241-2 PubMedGoogle Scholar
  75. Malthesorenssen D, Skrede KK, Fonnum F (1979) Calcium-dependent release of d-[3H] aspartate evoked by selective electrical stimulation of excitatory afferent fibres to hippocampal pyramidal cells in vitro. Neuroscience 4(9):1255–1263. doi:10.1016/0306-4522(79)90155-6 Google Scholar
  76. Masuda W, Nouso C, Kitamura C, Terashita M, Noguchi T (2003) Free d-aspartic acid in rat salivary glands. Arch Biochem Biophys 420(1):46–54. doi:10.1016/j.abb.2003.09.032 PubMedGoogle Scholar
  77. Miao H, Rubakhin SS, Sweedler JV (2005) Subcellular analysis of d-Aspartate. Anal Chem 77(22):7190–7194. doi:10.1021/ac0511694 PubMedGoogle Scholar
  78. Miao H, Rubakhin SS, Scanlan CR, Wang LP, Sweedler JV (2006a) d-Aspartate as a putative cell-cell signaling molecule in the Aplysia californica central nervous system. J Neurochem 97(2):595–606. doi:10.1111/j.1471-4159.2006.03891.x PubMedGoogle Scholar
  79. Miao H, Rubakhin SS, Sweedler JV (2006b) Confirmation of peak assignments in capillary electrophoresis using immunoprecipitation. Application to d-aspartate measurements in neurons. J Chromatogr A 1106(1–2):56–60. doi:10.1016/j.chroma.2005.09.037 PubMedGoogle Scholar
  80. Morikawa A, Hamase K, Inoue T, Konno R, Zaitsu K (2007) Alterations in d-amino acid levels in the brains of mice and rats after the administration of d-amino acids. Amino Acids 32(1):13–20. doi:10.1007/s00726-005-0357-8 PubMedGoogle Scholar
  81. Muzzolini A, Bregola G, Bianchi C, Beani L, Simonato M (1997) Characterization of glutamate and [H-3] d-aspartate outflow from various in vitro preparations of the rat hippocampus. Neurochem Int 31(1):113–124. doi:10.1016/S0197-0186(96)00129-5 PubMedGoogle Scholar
  82. Nagasaki H (1994) Gender-related differences of mouse liver d-aspartate oxidase in the activity and response to administration of d-aspartate and peroxisome proliferators. Int J Biochem 26(3):415–423. doi:10.1016/0020-711X(94)90062-0 PubMedGoogle Scholar
  83. Nagata Y, Homma H, Lee JA, Imai K (1999a) d-Aspartate stimulation of testosterone synthesis in rat Leydig cells. FEBS Lett 444(2–3):160–164. doi:10.1016/s0014-5793(99)00045-9 PubMedGoogle Scholar
  84. Nagata Y, Homma H, Matsumoto M, Imai K (1999b) Stimulation of steroidogenic acute regulatory protein (StAR) gene expression by d-aspartate in rat Leydig cells. FEBS Lett 454(3):317–320. doi:10.1016/s0014-5793(99)00840-6 PubMedGoogle Scholar
  85. Nakatsuka S, Hayashi M, Muroyama A, Otsuka M, Kozaki S, Yamada H, Moriyama Y (2001) d-Aspartate is stored in secretory granules and released through a Ca2+-dependent pathway in a subset of rat pheochromocytoma PC12 cells. J Biol Chem 276(28):26589–26596. doi:10.1074/jbc.M011754200 PubMedGoogle Scholar
  86. Negri A, Ceciliani F, Tedeschi G, Simonic T, Ronchi S (1992) The primary structure of the flavoprotein d-aspartate oxidase from beef kidney. J Biol Chem 267(17):11865–11871PubMedGoogle Scholar
  87. Neidle A, Dunlop DS (1990) Developmental changes in free d-aspartic acid in the chicken embryo and in the neonatal rat. Life Sci 46(21):1517–1522. doi:10.1016/0024-3205(90)90424-p PubMedGoogle Scholar
  88. Ogawa T, Fukuda M, Sasaoka K (1973) Occurrence of d-amino acid aminotransferase in pea seedlings. Biochem Biophys Res Commun 52:998–1002. doi:10.1016/0006-291x(73)91036-x PubMedGoogle Scholar
  89. Okuma E, Abe H (1994) Simultaneous determination of d- and l-amino acids in the nervous tissues of crustaceans using precolumn derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate and reversed-phase ion-pair high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 660(2):243–250. doi:10.1016/0378-4347(94)00304-1 Google Scholar
  90. Page JS, Rubakhin SS, Sweedler JV (2002) Single-neuron analysis using CE combined with MALDI MS and radionuclide detection. Anal Chem 74(3):497–503PubMedGoogle Scholar
  91. Palmer AM, Reiter CT (1994) Comparison of the superfused efflux of preaccumulated d-[3H] aspartate and endogenous l-aspartate and l-glutamate from rat cerebrocortical minislices. Neurochem Int 25(5):441–450. doi:10.1016/0197-0186(94)90020-5 PubMedGoogle Scholar
  92. Pampillo M, Scimonelli T, Bottino MC, Duvilanski BH, Rettori V, Seilicovich A, Lasaga M (2002) The effect of d-aspartate on luteinizing hormone-releasing hormone, alpha-melanocyte-stimulating hormone GABA and dopamine release. Neuroreport 13(17):2341–2344. doi:10.1097/01.wnr.0000044986.13025.9d PubMedGoogle Scholar
  93. Ramachandran B, Houben K, Rozenberg YY, Haigh JR, Varpetian A, Howard BD (1993) Differential expression of transporters for norepinephrine and glutamate in wild type, variant, and WNT1-expressing PC12 cells. J Biol Chem 268(32):23891–23897PubMedGoogle Scholar
  94. Raucci F, Di Fiore MM (2010) The maturation of oocyte follicular epithelium of Podarcis s. sicula is promoted by d-aspartic acid. J Histochem Cytochem 58(2):157–171. doi:10.1369/jhc.2009.954636 PubMedGoogle Scholar
  95. Raucci F, Di Fiore MM (2011) d-Asp: a new player in reproductive endocrinology of the amphibian Rana esculenta. J Chromatogr B Analyt Technol Biomed Life Sci 879(29):3268–3276. doi:10.1016/j.jchromb.2011.04.007 PubMedGoogle Scholar
  96. Raucci F, Santillo A, D’Aniello A, Baccari GC (2005) d-Aspartate modulates transcriptional activity in Harderian gland of frog, Rana esculenta: morphological and molecular evidence. J Cell Physiol 204(2):445–454. doi:10.1002/jcp.20316 PubMedGoogle Scholar
  97. Rubakhin SS, Romanova EV, Nemes P, Sweedler JV (2011) Profiling metabolites and peptides in single cells. Nat Methods 8(4 Suppl):S20–S29. doi:10.1038/nmeth.1549 PubMedGoogle Scholar
  98. Sakai K, Homma H, Lee JA, Fukushima T, Santa T, Tashiro K, Iwatsubo T, Imai K (1998) Emergence of d-aspartic acid in the differentiating neurons of the rat central nervous system. Brain Res 808(1):65–71. doi:10.1016/s0006-8993(98)00599-x PubMedGoogle Scholar
  99. Sato M, Inoue F, Kanno N, Sato Y (1987) The occurrence of N-methyl-d-aspartic acid in muscle extracts of the blood shell Scapharca broughtonii. Biochem J 241(1):309–311PubMedGoogle Scholar
  100. Savage DD, Galindo R, Queen SA, Paxton LL, Allan AM (2001) Characterization of electrically evoked H-3-d-aspartate release from hippocampal slices. Neurochem Int 38(3):255–267. doi:10.1016/s0197-0186(00)00077-2 PubMedGoogle Scholar
  101. Scanlan C, Shi T, Hatcher NG, Rubakhin SS, Sweedler JV (2010) Synthesis, accumulation, and release of d-aspartate in the Aplysia californica CNS. J Neurochem 115(5):1234–1244. doi:10.1111/j.1471-4159.2010.07020.x PubMedGoogle Scholar
  102. Schell MJ, Cooper OB, Snyder SH (1997) d-Aspartate localizations imply neuronal and neuroendocrine roles. Proc Natl Acad Sci USA 94(5):2013–2018. doi:10.1073/pnas.94.5.2013 PubMedGoogle Scholar
  103. Setoyama C, Miura R (1997) Structural and functional characterization of the human brain d-aspartate oxidase. J Biochem 121(4):798–803PubMedGoogle Scholar
  104. Shibata K, Watanabe T, Yoshikawa H, Abe K, Takahashi S, Kera Y, Yamada RH (2003) Purification and characterization of aspartate racemase from the bivalve mollusk Scapharca broughtonii. Comp Biochem Physiol B Biochem Mol Biol 134(2):307–314. doi:10.1016/s1096-4959(02)00267-1 PubMedGoogle Scholar
  105. Shibata K, Sugaya N, Ono W, Abe K, Takahashi S, Kera Y (2011) Determination of d-aspartate N-methyltransferase activity in the starfish by direct analysis of N-methyl-d-aspartate with high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sciw 879(29):3229–3234. doi:10.1016/j.jchromb.2011.02.035 Google Scholar
  106. Simonic T, Duga S, Negri A, Tedeschi G, Malcovati M, Tenchini ML, Ronchi S (1997) cDNA cloning and expression of the flavoprotein d-aspartate oxidase from bovine kidney cortex. Biochem J 322:729–735PubMedGoogle Scholar
  107. Spinelli P, Brown ER, Ferrandino G, Branno M, Montarolo PG, D’Aniello E, Rastogi RK, D’Aniello B, Baccari GC, Fisher G, D’Aniello A (2006) d-aspartic acid in the nervous system of Aplysia limacina: possible role in neurotransmission. J Cell Physiol 206(3):672–681. doi:10.1002/jcp.20513 PubMedGoogle Scholar
  108. Takahashi S, Takahashi T, Kera Y, Matsunaga R, Shibuya H, Yamada RH (2004) Cloning and expression in Escherichia coli of the d-aspartate oxidase gene from the yeast Cryptococcus humicola and characterization of the recombinant enzyme. J Biochem 135(4):533–540. doi:10.1093/jb/mvh068 PubMedGoogle Scholar
  109. Takigawa Y, Homma H, Lee JA, Fukushima T, Santa T, Iwatsubo T, Imai K (1998) d-Aspartate uptake into cultured rat pinealocytes and the concomitant effect on l-aspartate levels and melatonin secretion. Biochem Biophys Res Commun 248(3):641–647. doi:10.1006/bbrc.1998.8971 PubMedGoogle Scholar
  110. Todoroki N, Shibata K, Yamada T, Kera Y, Yamada RH (1999) Determination of N-methyl-d-aspartate in tissues of bivalves by high-performance liquid chromatography. J Chromatogr B 728(1):41–47. doi:10.1016/s0378-4347(99)00089-4 Google Scholar
  111. Topo E, Soricelli A, D’Aniello A, Ronsini S, D’Aniello G (2009) The role and molecular mechanism of d-aspartic acid in the release and synthesis of LH and testosterone in humans and rats. Reprod Biol Endocrinol 7:120. doi:10.1186/1477-7827-7-120 PubMedGoogle Scholar
  112. Topo E, Soricelli A, Di Maio A, D’Aniello E, Di Fiore MM, D’Aniello A (2010) Evidence for the involvement of d-aspartic acid in learning and memory of rat. Amino Acids 38(5):1561–1569. doi:10.1007/s00726-009-0369-x PubMedGoogle Scholar
  113. Vacca RA, Christen P, Malashkevich VN, Jansonius JN, Sandmeier E (1995) Substitution of apolar residues in the active site of aspartate aminotransferase by histidine. Effects on reaction and substrate specificity. Eur J Biochem 227(1–2):481–487. doi:10.1111/j.1432-1033.1995.tb20413.x PubMedGoogle Scholar
  114. Vacca RA, Giannattasio S, Graber R, Sandmeier E, Marra E, Christen P (1997) Active-site Arg > Lys substitutions alter reaction and substrate specificity of aspartate aminotransferase. J Biol Chem 272(35):21932–21937. doi:10.1074/jbc.272.35.21932 PubMedGoogle Scholar
  115. Vanveldhoven PP, Brees C, Mannaerts GP (1991) d-Aspartate oxidase, a peroxisomal enzyme in liver of rat and man. Biochim Biophys Acta 1073(1):203–208. doi:10.1016/0304-4165(91)90203-s Google Scholar
  116. Verdoorn TA, Dingledine R (1988) Excitatory amino acid receptors expressed in Xenopus oocytes: agonist pharmacology. Mol Pharmacol 34:298–307PubMedGoogle Scholar
  117. Wang H, Wolosker H, Pevsner J, Snyder SH, Selkoe DJ (2000) Regulation of rat magnocellular neurosecretory system by d-aspartate: evidence for biological role(s) of a naturally occurring free d-amino acid in mammals. J Endocrinol 167(2):247–252. doi:10.1677/joe.0.1670247 PubMedGoogle Scholar
  118. Wang H, Wolosker H, Morris JF, Pevsner J, Snyder SH, Selkoe DJ (2002) Naturally occurring free d-aspartate is a nuclear component of cells in the mammalian hypothalamo-neurohypophyseal system. Neuroscience 109(1):1–4. doi:10.1016/S0306-4522(01)00545-0 PubMedGoogle Scholar
  119. Wang LP, Ota N, Romanova EV, Sweedler JV (2011) A novel pyridoxal 5′-phosphate-dependent amino acid racemase in the Aplysia californica central nervous system. J Biol Chem 286(15):13765–13774. doi:10.1074/jbc.M110.178228 PubMedGoogle Scholar
  120. Watkins JC, Jane DE (2006) The glutamate story. Br J Pharmacol 147:S100–S108. doi:10.1038/sj.bjp.0706444 PubMedGoogle Scholar
  121. Weil ZM, Huang AS, Beigneux A, Kim PM, Molliver ME, Blackshaw S, Young SG, Nelson RJ, Snyder SH (2006) Behavioural alterations in male mice lacking the gene for d-aspartate oxidase. Behav Brain Res 171(2):295–302. doi:10.1016/j.bbr.2006.04.008 PubMedGoogle Scholar
  122. Wolosker H, D’Aniello A, Snyder SH (2000) d-Aspartate disposition in neuronal and endocrine tissues: ontogeny, biosynthesis and release. Neuroscience 100(1):183–189. doi:10.1016/s0306-4522(00)00321-3 PubMedGoogle Scholar
  123. Yamada R, Nagasaki H, Nagata Y, Wakabayashi Y, Iwashima A (1989) Administration of d-aspartate increases d-aspartate oxidase activity in mouse liver. Biochim Biophys Acta 990(3):325–328. doi:10.1016/S0304-4165(89)80053-4 PubMedGoogle Scholar
  124. Yamada RH, Ujiie H, Kera Y, Nakase T, Kitagawa K, Imasaka T, Arimoto K, Takahashi M, Matsumura Y (1996) Purification and properties of d-aspartate oxidase from Cryptococcus humicolus UJ1. Biochim Biophys Acta Protein Struct Mol Enzymol 1294(2):153–158. doi:10.1016/0167-4838(96)00012-x Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Nobutoshi Ota
    • 1
  • Ting Shi
    • 1
    • 2
  • Jonathan V. Sweedler
    • 1
  1. 1.Department of Chemistry and Beckman InstituteUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Bristol-Myers SquibbPrincetonUSA

Personalised recommendations