Advertisement

Amino Acids

, Volume 43, Issue 5, pp 1861–1871 | Cite as

New insights on the role of free d-aspartate in the mammalian brain

  • Francesco ErricoEmail author
  • Francesco Napolitano
  • Robert Nisticò
  • Alessandro Usiello
Invited Review

Abstract

Free d-aspartate (d-Asp) occurs in substantial amounts in the brain at the embryonic phase and in the first few postnatal days, and strongly decreases in adulthood. Temporal reduction of d-Asp levels depends on the postnatal onset of d-aspartate oxidase (DDO) activity, the only enzyme able to selectively degrade this d-amino acid. Several results indicate that d-Asp binds and activates N-methyl-d-aspartate receptors (NMDARs). Accordingly, recent studies have demonstrated that deregulated, higher levels of d-Asp, in knockout mice for Ddo gene and in d-Asp-treated mice, modulate hippocampal NMDAR-dependent long-term potentiation (LTP) and spatial memory. Moreover, similarly to d-serine, administration of d-Asp to old mice is able to rescue the physiological age-related decay of hippocampal LTP. In agreement with a neuromodulatory action of d-Asp on NMDARs, increased levels of this d-amino acid completely suppress long-term depression at corticostriatal synapses and attenuate the prepulse inhibition deficits produced in mice by the psychotomimetic drugs, amphetamine and MK-801. Based on the evidence which points to the ability of d-Asp to act as an endogenous agonist on NMDARs and considering the abundance of d-Asp during prenatal and early life, future studies will be crucial to address the effect of this molecule in the developmental processes of the brain controlled by the activation of NMDARs.

Keywords

d-Amino acids N-methyl d-aspartate receptor Synaptic plasticity Learning and memory Sensorimotor gating 

Notes

Acknowledgments

F. E. was supported by a grant from the Italian Ministero dell’Istruzione, dell’Università e della Ricerca. A.U. represents the Mariano Scippacercola Foundation.

Conflict of interest

The authors have no conflict of interest to declare.

References

  1. Adachi M, Koyama H, Long Z, Sekine M, Furuchi T, Imai K, Nimura N, Shimamoto K, Nakajima T, Homma H (2004) l-Glutamate in the extracellular space regulates endogenous d-aspartate homeostasis in rat pheochromocytoma MPT1 cells. Arch Biochem Biophys 424:89–96PubMedCrossRefGoogle Scholar
  2. Amery L, Brees C, Baes M, Setoyama C, Miura R, Mannaerts GP, Van Veldhoven PP (1998) C-terminal tripeptide Ser-Asn-Leu (SNL) of human d-aspartate oxidase is a functional peroxisome-targeting signal. Biochem J 336(Pt 2):367–371PubMedGoogle Scholar
  3. Anderson CM, Bridges RJ, Chamberlin AR, Shimamoto K, Yasuda-Kamatani Y, Swanson RA (2001) Differing effects of substrate and non-substrate transport inhibitors on glutamate uptake reversal. J Neurochem 79:1207–1216PubMedCrossRefGoogle Scholar
  4. Bak LK, Schousboe A, Waagepetersen HS (2003) Characterization of depolarization-coupled release of glutamate from cultured mouse cerebellar granule cells using dl-threo-beta-benzyloxyaspartate (dl-TBOA) to distinguish between the vesicular and cytoplasmic pools. Neurochem Int 43:417–424PubMedCrossRefGoogle Scholar
  5. Baranano DE, Ferris CD, Snyder SH (2001) Atypical neural messengers. Trends Neurosci 24:99–106PubMedCrossRefGoogle Scholar
  6. Beard ME (1990) d-aspartate oxidation by rat and bovine renal peroxisomes: an electron microscopic cytochemical study. J Histochem Cytochem Off J Histochem Soc 38:1377–1381CrossRefGoogle Scholar
  7. Calabresi P, Pisani A, Mercuri NB, Bernardi G (1992) Long-term potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels. Eur J Neurosci 4:929–935PubMedCrossRefGoogle Scholar
  8. Centonze D, Usiello A, Costa C, Picconi B, Erbs E, Bernardi G, Borrelli E, Calabresi P (2004) Chronic haloperidol promotes corticostriatal long-term potentiation by targeting dopamine D2L receptors. J Neurosci 24:8214–8222PubMedCrossRefGoogle Scholar
  9. Centonze D, Rossi S, Tortiglione A, Picconi B, Prosperetti C, De Chiara V, Bernardi G, Calabresi P (2007) Synaptic plasticity during recovery from permanent occlusion of the middle cerebral artery. Neurobiol Dis 27:44–53PubMedCrossRefGoogle Scholar
  10. Corrigan JJ (1969) d-Amino acids in animals. Science 164:142–149PubMedCrossRefGoogle Scholar
  11. Cousin MA, Nicholls DG (1997) Synaptic vesicle recycling in cultured cerebellar granule cells: role of vesicular acidification and refilling. J Neurochem 69:1927–1935PubMedCrossRefGoogle Scholar
  12. Coyle JT, Balu D, Benneyworth M, Basu A, Roseman A (2010) Beyond the dopamine receptor: novel therapeutic targets for treating schizophrenia. Dialogues Clin Neurosci 12:359–382PubMedGoogle Scholar
  13. D’Aniello A (2007) d-Aspartic acid: an endogenous amino acid with an important neuroendocrine role. Brain Res Rev 53:215–234PubMedCrossRefGoogle Scholar
  14. D’Aniello A, Giuditta A (1978) Presence of d-aspartate in squid axoplasm and in other regions of the cephalopod nervous system. J Neurochem 31:1107–1108PubMedCrossRefGoogle Scholar
  15. D’Aniello A, Guiditta A (1977) Identification of d-aspartic acid in the brain of Octopus vulgaris Lam. J Neurochem 29:1053–1057PubMedCrossRefGoogle Scholar
  16. D’Aniello A, Vetere A, Petrucelli L (1993) Further study on the specificity of d-amino acid oxidase and d-aspartate oxidase and time course for complete oxidation of d-amino acids. Comp Biochem Physiol B 105:731–734PubMedCrossRefGoogle Scholar
  17. D’Aniello S, Somorjai I, Garcia-Fernandez J, Topo E, D’Aniello A (2010) d-Aspartic acid is a novel endogenous neurotransmitter. FASEB J 25:1014–1027PubMedCrossRefGoogle Scholar
  18. Davies LP, Johnston GA (1976) Uptake and release of d- and l-aspartate by rat brain slices. J Neurochem 26:1007–1014PubMedCrossRefGoogle Scholar
  19. Davis S, Laroche S (2006) Mitogen-activated protein kinase/extracellular regulated kinase signalling and memory stabilization: a review. Genes Brain Behav 5(Suppl 2):61–72PubMedGoogle Scholar
  20. Ding X, Ma N, Nagahama M, Yamada K, Semba R (2011) Localization of d-serine and serine racemase in neurons and neuroglias in mouse brain. Neurol Sci 32:263–267PubMedCrossRefGoogle Scholar
  21. Dunlop DS, Neidle A, McHale D, Dunlop DM, Lajtha A (1986) The presence of free d-aspartic acid in rodents and man. Biochem Biophys Res Commun 141:27–32PubMedCrossRefGoogle Scholar
  22. Errico F, Pirro MT, Affuso A, Spinelli P, De Felice M, D’Aniello A, Di Lauro R (2006) A physiological mechanism to regulate d-aspartic acid and NMDA levels in mammals revealed by d-aspartate oxidase deficient mice. Gene 374:50–57PubMedCrossRefGoogle Scholar
  23. Errico F, Rossi S, Napolitano F, Catuogno V, Topo E, Fisone G, D’Aniello A, Centonze D, Usiello A (2008a) d-aspartate prevents corticostriatal long-term depression and attenuates schizophrenia-like symptoms induced by amphetamine and MK-801. J Neurosci 28:10404–10414PubMedCrossRefGoogle Scholar
  24. Errico F, Nistico R, Palma G, Federici M, Affuso A, Brilli E, Topo E, Centonze D, Bernardi G, Bozzi Y, D’Aniello A, Di Lauro R, Mercuri NB, Usiello A (2008b) Increased levels of d-aspartate in the hippocampus enhance LTP but do not facilitate cognitive flexibility. Mol Cell Neurosci 37:236–246PubMedCrossRefGoogle Scholar
  25. Errico F, Nistico R, Napolitano F, Oliva AB, Romano R, Barbieri F, Florio T, Russo C, Mercuri NB, Usiello A (2011a) Persistent increase of d-aspartate in d-aspartate oxidase mutant mice induces a precocious hippocampal age-dependent synaptic plasticity and spatial memory decay. Neurobiol Aging 32:2061–2074PubMedCrossRefGoogle Scholar
  26. Errico F, Nistico R, Napolitano F, Mazzola C, Astone D, Pisapia T, Giustizieri M, D’Aniello A, Mercuri NB, Usiello A (2011b) Increased d-aspartate brain content rescues hippocampal age-related synaptic plasticity deterioration of mice. Neurobiol Aging 32:2229–2243PubMedCrossRefGoogle Scholar
  27. Errico F, Bonito-Oliva A, Bagetta V, Vitucci D, Romano R, Zianni E, Napolitano F, Marinucci S, Di Luca M, Calabresi P, Fisone G, Carta M, Picconi B, Gardoni F, Usiello A (2011c) Higher free d-aspartate and N-methyl-d-aspartate levels prevent striatal depotentiation and anticipate l-DOPA-induced dyskinesia. Exp Neurol 232:240–250PubMedCrossRefGoogle Scholar
  28. Fagg GE, Matus A (1984) Selective association of N-methyl aspartate and quisqualate types of l-glutamate receptor with brain postsynaptic densities. Proc Natl Acad Sci USA 81:6876–6880PubMedCrossRefGoogle Scholar
  29. Fleck MW, Barrionuevo G, Palmer AM (2001) Synaptosomal and vesicular accumulation of l-glutamate, l-aspartate and d-aspartate. Neurochem Int 39:217–225PubMedCrossRefGoogle Scholar
  30. Fuchs SA, Berger R, de Koning TJ (2011) d-Serine: the right or wrong isoform? Brain Res 1401:104–117PubMedCrossRefGoogle Scholar
  31. Fujii N (2002) d-Amino acids in living higher organisms. Orig Life Evol Biosph 32:103–127PubMedCrossRefGoogle Scholar
  32. Fujii N (2005) d-Amino acid in elderly tissues. Biol Pharm Bull 28:1585–1589PubMedCrossRefGoogle Scholar
  33. Furuchi T, Homma H (2005) Free d-aspartate in mammals. Biol Pharm Bull 28:1566–1570PubMedCrossRefGoogle Scholar
  34. Furuchi T, Suzuki T, Sekine M, Katane M, Homma H (2009) Apoptotic inducers activate the release of d-aspartate through a hypotonic stimulus-triggered mechanism in PC12 cells. Arch Biochem Biophys 490:118–128PubMedCrossRefGoogle Scholar
  35. Garthwaite G, Garthwaite J (1985) Sites of d-[3H]aspartate accumulation in mouse cerebellar slices. Brain Res 343:129–136PubMedCrossRefGoogle Scholar
  36. Gazzola GC, Dall’Asta V, Bussolati O, Makowske M, Christensen HN (1981) A stereoselective anomaly in dicarboxylic amino acid transport. J Biol Chem 256:6054–6059PubMedGoogle Scholar
  37. Gerlai R (2002) Hippocampal LTP and memory in mouse strains: is there evidence for a causal relationship? Hippocampus 12:657–666PubMedCrossRefGoogle Scholar
  38. Gundersen V, Danbolt NC, Ottersen OP, Storm-Mathisen J (1993) Demonstration of glutamate/aspartate uptake activity in nerve endings by use of antibodies recognizing exogenous d-aspartate. Neuroscience 57:97–111PubMedCrossRefGoogle Scholar
  39. Hashimoto A, Oka T (1997) Free d-aspartate and d-serine in the mammalian brain and periphery. Prog Neurobiol 52:325–353PubMedCrossRefGoogle Scholar
  40. Hashimoto A, Nishikawa T, Oka T, Takahashi K, Hayashi T (1992a) Determination of free amino acid enantiomers in rat brain and serum by high-performance liquid chromatography after derivatization with N-tert.-butyloxycarbonyl-l-cysteine and o-phthaldialdehyde. J Chromatogr 582:41–48PubMedCrossRefGoogle Scholar
  41. Hashimoto A, Nishikawa T, Hayashi T, Fujii N, Harada K, Oka T, Takahashi K (1992b) The presence of free d-serine in rat brain. FEBS Lett 296:33–36PubMedCrossRefGoogle Scholar
  42. Hashimoto A, Nishikawa T, Oka T, Takahashi K (1993a) Endogenous d-serine in rat brain: N-methyl-d-aspartate receptor-related distribution and aging. J Neurochem 60:783–786PubMedCrossRefGoogle Scholar
  43. Hashimoto A, Kumashiro S, Nishikawa T, Oka T, Takahashi K, Mito T, Takashima S, Doi N, Mizutani Y, Yamazaki T et al (1993b) Embryonic development and postnatal changes in free d-aspartate and d-serine in the human prefrontal cortex. J Neurochem 61:348–351PubMedCrossRefGoogle Scholar
  44. Hashimoto A, Oka T, Nishikawa T (1995) Anatomical distribution and postnatal changes in endogenous free d-aspartate and d-serine in rat brain and periphery. Eur J Neurosci 7:1657–1663PubMedCrossRefGoogle Scholar
  45. Homma H (2007) Biochemistry of d-aspartate in mammalian cells. Amino Acids 32:3–11PubMedCrossRefGoogle Scholar
  46. Huang AS, Beigneux A, Weil ZM, Kim PM, Molliver ME, Blackshaw S, Nelson RJ, Young SG, Snyder SH (2006) d-aspartate regulates melanocortin formation and function: behavioral alterations in d-aspartate oxidase-deficient mice. J Neurosci 26:2814–2819PubMedCrossRefGoogle Scholar
  47. Huang AS, Lee DA, Blackshaw S (2008) d-Aspartate and d-aspartate oxidase show selective and developmentally dynamic localization in mouse retina. Exp Eye Res 86:704–709PubMedCrossRefGoogle Scholar
  48. Junjaud G, Rouaud E, Turpin F, Mothet JP, Billard JM (2006) Age-related effects of the neuromodulator d-serine on neurotransmission and synaptic potentiation in the CA1 hippocampal area of the rat. J Neurochem 98:1159–1166PubMedCrossRefGoogle Scholar
  49. Kanahara N, Shimizu E, Ohgake S, Fujita Y, Kohno M, Hashimoto T, Matsuzawa D, Shirayama Y, Hashimoto K, Iyo M (2008) Glycine and d: -serine, but not d: -cycloserine, attenuate prepulse inhibition deficits induced by NMDA receptor antagonist MK-801. Psychopharmacology 198:363–374PubMedCrossRefGoogle Scholar
  50. Katane M, Homma H (2010) d-aspartate oxidase: the sole catabolic enzyme acting on free d-aspartate in mammals. Chem Biodivers 7:1435–1449PubMedCrossRefGoogle Scholar
  51. Kim PM, Duan X, Huang AS, Liu CY, Ming GL, Song H, Snyder SH (2010) Aspartate racemase, generating neuronal d-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci USA 107:3175–3179PubMedCrossRefGoogle Scholar
  52. Koyama H, Adachi M, Sekine M, Katane M, Furuchi T, Homma H (2006) Cytoplasmic localization and efflux of endogenous d-aspartate in pheochromocytoma 12 cells. Arch Biochem Biophys 446:131–139PubMedCrossRefGoogle Scholar
  53. Lee JA, Homma H, Tashiro K, Iwatsubo T, Imai K (1999) d-Aspartate localization in the rat pituitary gland and retina. Brain Res 838:193–199PubMedCrossRefGoogle Scholar
  54. Long Z, Homma H, Lee JA, Fukushima T, Santa T, Iwatsubo T, Yamada R, Imai K (1998) Biosynthesis of d-aspartate in mammalian cells. FEBS Lett 434:231–235PubMedCrossRefGoogle Scholar
  55. Martineau M, Baux G, Mothet JP (2006) d-serine signalling in the brain: friend and foe. Trends Neurosci 29:481–491PubMedCrossRefGoogle Scholar
  56. Miya K, Inoue R, Takata Y, Abe M, Natsume R, Sakimura K, Hongou K, Miyawaki T, Mori H (2008) Serine racemase is predominantly localized in neurons in mouse brain. J Comp Neurol 510:641–654PubMedCrossRefGoogle Scholar
  57. Molinaro G, Pietracupa S, Di Menna L, Pescatori L, Usiello A, Battaglia G, Nicoletti F, Bruno V (2010) d-Aspartate activates mGlu receptors coupled to polyphosphoinositide hydrolysis in neonate rat brain slices. Neurosci Lett 478:128–130PubMedCrossRefGoogle Scholar
  58. Monahan JB, Michel J (1987) Identification and characterization of an N-methyl-d-aspartate-specific l-[3H]glutamate recognition site in synaptic plasma membranes. J Neurochem 48:1699–1708PubMedCrossRefGoogle Scholar
  59. Morris RG, Moser EI, Riedel G, Martin SJ, Sandin J, Day M, O’Carroll C (2003) Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos Trans R Soc Lond 358:773–786CrossRefGoogle Scholar
  60. Mothet JP, Rouaud E, Sinet PM, Potier B, Jouvenceau A, Dutar P, Videau C, Epelbaum J, Billard JM (2006) A critical role for the glial-derived neuromodulator d-serine in the age-related deficits of cellular mechanisms of learning and memory. Aging Cell 5:267–274PubMedCrossRefGoogle Scholar
  61. Nakatsuka S, Hayashi M, Muroyama A, Otsuka M, Kozaki S, Yamada H, Moriyama Y (2001) d-Aspartate is stored in secretory granules and released through a Ca(2+)-dependent pathway in a subset of rat pheochromocytoma PC12 cells. J Biol Chem 276:26589–26596PubMedCrossRefGoogle Scholar
  62. Negri A, Ceciliani F, Tedeschi G, Simonic T, Ronchi S (1992) The primary structure of the flavoprotein d-aspartate oxidase from beef kidney. J Biol Chem 267:11865–11871PubMedGoogle Scholar
  63. Neidle A, Dunlop DS (1990) Developmental changes in free d-aspartic acid in the chicken embryo and in the neonatal rat. Life Sci 46:1517–1522PubMedCrossRefGoogle Scholar
  64. Nguyen PV, Gerlai R (2002) Behavioural and physiological characterization of inbred mouse strains: prospects for elucidating the molecular mechanisms of mammalian learning and memory. Genes Brain Behav 1:72–81PubMedCrossRefGoogle Scholar
  65. Ogita K, Yoneda Y (1988) Disclosure by triton X-100 of NMDA-sensitive [3H] glutamate binding sites in brain synaptic membranes. Biochem Biophys Res Commun 153:510–517PubMedCrossRefGoogle Scholar
  66. Oldendorf WH (1973) Stereospecificity of blood–brain barrier permeability to amino acids. Am J Physiol 224:967–969PubMedGoogle Scholar
  67. Olverman HJ, Jones AW, Mewett KN, Watkins JC (1988) Structure/activity relations of N-methyl-d-aspartate receptor ligands as studied by their inhibition of [3H]d-2-amino-5-phosphonopentanoic acid binding in rat brain membranes. Neuroscience 26:17–31PubMedCrossRefGoogle Scholar
  68. Palacin M, Estevez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78:969–1054PubMedGoogle Scholar
  69. Potier B, Turpin FR, Sinet PM, Rouaud E, Mothet JP, Videau C, Epelbaum J, Dutar P, Billard JM (2010) Contribution of the d-Serine-Dependent pathway to the cellular mechanisms underlying cognitive aging. Front Aging Neurosci 2:1PubMedGoogle Scholar
  70. Ransom RW, Stec NL (1988) Cooperative modulation of [3H]MK-801 binding to the N-methyl-d-aspartate receptor-ion channel complex by l-glutamate, glycine, and polyamines. J Neurochem 51:830–836PubMedCrossRefGoogle Scholar
  71. Rosenzweig ES, Barnes CA (2003) Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog Neurobiol 69:143–179PubMedCrossRefGoogle Scholar
  72. Sakai K, Homma H, Lee JA, Fukushima T, Santa T, Tashiro K, Iwatsubo T, Imai K (1998) Emergence of d-aspartic acid in the differentiating neurons of the rat central nervous system. Brain Res 808:65–71PubMedCrossRefGoogle Scholar
  73. Sawa A, Snyder SH (2002) Schizophrenia: diverse approaches to a complex disease. Science 296:692–695PubMedCrossRefGoogle Scholar
  74. Schell MJ, Molliver ME, Snyder SH (1995) d-Serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA 92:3948–3952PubMedCrossRefGoogle Scholar
  75. Schell MJ, Cooper OB, Snyder SH (1997a) d-aspartate localizations imply neuronal and neuroendocrine roles. Proc Natl Acad Sci USA 94:2013–2018PubMedCrossRefGoogle Scholar
  76. Schell MJ, Brady RO Jr, Molliver ME, Snyder SH (1997b) d-Serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J Neurosci 17:1604–1615PubMedGoogle Scholar
  77. Shifman M (1991) The effect of gangliosides upon recovery of aspartate/glutamatergic synapses in striatum after lesions of the rat sensorimotor cortex. Brain Res 568:323–324PubMedCrossRefGoogle Scholar
  78. Still JL, Buell MV et al (1949) Studies on the cyclophorase system; d-aspartic oxidase. J Biol Chem 179:831–837PubMedGoogle Scholar
  79. Storm-Mathisen J, Wold JE (1981) In vivo high-affinity uptake and axonal transport of D-[2,3–3H]aspartate in excitatory neurons. Brain Res 230:427–433PubMedCrossRefGoogle Scholar
  80. Streit P (1980) Selective retrograde labeling indicating the transmitter of neuronal pathways. J Comp Neurol 191:429–463PubMedCrossRefGoogle Scholar
  81. Taxt T, Storm-Mathisen J (1984) Uptake of d-aspartate and l-glutamate in excitatory axon terminals in hippocampus: autoradiographic and biochemical comparison with gamma-aminobutyrate and other amino acids in normal rats and in rats with lesions. Neuroscience 11:79–100PubMedCrossRefGoogle Scholar
  82. Tsai G, Coyle JT (2002) Glutamatergic mechanisms in schizophrenia. Annu Rev Pharmacol Toxicol 42:165–179PubMedCrossRefGoogle Scholar
  83. Tsai G, Ralph-Williams RJ, Martina M, Bergeron R, Berger-Sweeney J, Dunham KS, Jiang Z, Caine SB, Coyle JT (2004) Gene knockout of glycine transporter 1: characterization of the behavioral phenotype. Proc Natl Acad Sci USA 101:8485–8490PubMedCrossRefGoogle Scholar
  84. Turpin FR, Potier B, Dulong JR, Sinet PM, Alliot J, Oliet SH, Dutar P, Epelbaum J, Mothet JP, Billard JM (2011) Reduced serine racemase expression contributes to age-related deficits in hippocampal cognitive function. Neurobiol Aging 32:1495–1504PubMedCrossRefGoogle Scholar
  85. Van Veldhoven PP, Brees C, Mannaerts GP (1991) d-Aspartate oxidase, a peroxisomal enzyme in liver of rat and man. Biochim Biophys Acta 1073:203–208PubMedCrossRefGoogle Scholar
  86. Wang H, Wolosker H, Morris JF, Pevsner J, Snyder SH, Selkoe DJ (2002) Naturally occurring free d-aspartate is a nuclear component of cells in the mammalian hypothalamo-neurohypophyseal system. Neuroscience 109:1–4PubMedCrossRefGoogle Scholar
  87. Wilkin GP, Garthwaite J, Balazs R (1982) Putative acidic amino acid transmitters in the cerebellum. II. Electron microscopic localization of transport sites. Brain Res 244:69–80PubMedCrossRefGoogle Scholar
  88. Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: a glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission. Proc Natl Acad Sci USA 96:13409–13414PubMedCrossRefGoogle Scholar
  89. Wolosker H, D’Aniello A, Snyder SH (2000) d-Aspartate disposition in neuronal and endocrine tissues: ontogeny, biosynthesis and release. Neuroscience 100:183–189PubMedCrossRefGoogle Scholar
  90. Zaar K, Kost HP, Schad A, Volkl A, Baumgart E, Fahimi HD (2002) Cellular and subcellular distribution of d-aspartate oxidase in human and rat brain. J Comp Neurol 450:272–282PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Francesco Errico
    • 1
    • 2
    Email author
  • Francesco Napolitano
    • 1
  • Robert Nisticò
    • 3
  • Alessandro Usiello
    • 1
    • 4
    • 5
  1. 1.Ceinge Biotecnologie AvanzateNaplesItaly
  2. 2.Università degli Studi di Napoli “Federico II”NaplesItaly
  3. 3.Centro Europeo per la Ricerca sul Cervello (CERC)/Fondazione Santa LuciaRomeItaly
  4. 4.Dipartimento di Scienze AmbientaliSeconda Università di Napoli (SUN)NaplesItaly
  5. 5.European Brain Research Institute (EBRI)RomeItaly

Personalised recommendations