Amino Acids

, Volume 43, Issue 4, pp 1405–1417 | Cite as

Paraoxonase 1 and homocysteine metabolism

  • Joanna Perła-Kaján
  • Hieronim Jakubowski
Review Article


Paraoxonase 1 (PON1), a component of high-density lipoprotein (HDL), is a calcium-dependent multifunctional enzyme that connects metabolisms of lipoproteins and homocysteine (Hcy). Both PON1 and Hcy have been implicated in human diseases, including atherosclerosis and neurodegeneration. The involvement of Hcy in disease could be mediated through its interactions with PON1. Due to its ability to reduce oxidative stress, PON1 contributes to atheroprotective functions of HDL in mice and humans. Although PON1 has the ability to hydrolyze a variety of substrates, only one of them—Hcy-thiolactone—is known to occur naturally. In humans and mice, Hcy-thiolactonase activity of PON1 protects against N-homocysteinylation, which is detrimental to protein structure and function. PON1 also protects against neurotoxicity associated with hyperhomocysteinemia in mouse models. The links between PON1 and Hcy in relation to pathological states such as coronary artery disease, stroke, diabetic mellitus, kidney failure and Alzheimer’s disease that emerge from recent studies are the topics of this review.


Paraoxonase 1 Homocysteine N-homocysteinylation Thiolactonase Atherosclerosis Alzheimer’s disease 



Supported in part by a grant from the National Science Center, Poland (MAY-2011/02/1/NZ1/00010).


  1. Adkins S, Gan KN et al (1993) Molecular basis for the polymorphic forms of human serum paraoxonase/arylesterase: glutamine or arginine at position 191, for the respective A or B allozymes. Am J Hum Genet 52(3):598–608PubMedGoogle Scholar
  2. Amine K, Atouk A et al (2011) Paraoxonase-1 (PON1) activity in patients with coronary artery diseases and in diabetic patients. Ann Biol Clin (Paris) 69(6):671–677Google Scholar
  3. Anderson J, Muhlestein J et al (2000) Plasma homocysteine predicts mortality independently of traditional risk factors and C-reactive protein in patients with angiographically defined coronary artery disease. Circulation 102(11):1227–1232CrossRefPubMedGoogle Scholar
  4. Angayarkanni N, Barathi S et al (2008) Serum PON1 arylesterase activity in relation to hyperhomocysteinaemia and oxidative stress in young adult central retinal venous occlusion patients. Eye (Lond) 22(7):969–974CrossRefGoogle Scholar
  5. Atamer A, Kocyigit Y et al (2008) Effect of oxidative stress on antioxidant enzyme activities, homocysteine and lipoproteins in chronic kidney disease. J Nephrol 21(6):924–930PubMedGoogle Scholar
  6. Ates O, Azizi S et al (2009) Decreased serum paraoxonase 1 activity and increased serum homocysteine and malondialdehyde levels in age-related macular degeneration. Tohoku J Exp Med 217(1):17–22CrossRefPubMedGoogle Scholar
  7. Aviram M, Billecke S et al (1998) Paraoxonase active site required for protection against LDL oxidation involves its free sulfhydryl group and is different from that required for its arylesterase/paraoxonase activities: selective action of human paraoxonase allozymes Q and R. Arterioscler Thromb Vasc Biol 18(10):1617–1624CrossRefPubMedGoogle Scholar
  8. Aydin M, Gokkusu C et al (2009) Association of genetic variants in Methylenetetrahydrofolate Reductase and Paraoxonase-1 genes with homocysteine, folate and vitamin B12 in coronary artery disease. Mol Cell Biochem 325(1–2):199–208CrossRefPubMedGoogle Scholar
  9. Barathi S, Angayarkanni N et al (2010) Homocysteinethiolactone and paraoxonase: novel markers of diabetic retinopathy. Diabetes Care 33(9):2031–2037CrossRefPubMedGoogle Scholar
  10. Bayrak A, Bayrak T et al (2011) Serum PON-1 activity but not Q192R polymorphism is related to the extent of atherosclerosis. J Atheroscler Thromb 19(4):376–384Google Scholar
  11. Bayrak T, Bayrak A et al (2010) Purification and kinetic properties of rabbit liver paraoxonase 1. J Chromatogr B Analyt Technol Biomed Life Sci 878(21):1791–1795CrossRefPubMedGoogle Scholar
  12. Bayrak A, Bayrak T et al (2011) Differential hydrolysis of homocysteine thiolactone by purified human serum (192)Q and (192)R PON1 isoenzymes. J Chromatogr B Analyt Technol Biomed Life Sci 879(1):49–55CrossRefPubMedGoogle Scholar
  13. Beltowski J, Wojcicka G et al (2010) Modulation of paraoxonase 1 and protein N-homocysteinylation by leptin and the synthetic liver X receptor agonist T0901317 in the rat. J Endocrinol 204(2):191–198CrossRefPubMedGoogle Scholar
  14. Ben-David M, Elias M et al (2012) Catalytic versatility and backups in enzyme active sites: the case of serum paraoxonase 1. J Mol Biol 418(3–4):181–196CrossRefPubMedGoogle Scholar
  15. Bhattacharyya T, Nicholls SJ et al (2008) Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA 299(11):1265–1276CrossRefPubMedGoogle Scholar
  16. Blatter MC, James RW et al (1993) Identification of a distinct human high-density lipoprotein subspecies defined by a lipoprotein-associated protein, K-45. Identity of K-45 with paraoxonase. Eur J Biochem 211(3):871–879CrossRefPubMedGoogle Scholar
  17. Borowczyk K, Shih DM et al (2012a) Metabolism and neurotoxicity of homocysteine thiolactone in mice: evidence for a protective role of paraoxonase 1. J Alzheimers Dis 30(2):225–231PubMedGoogle Scholar
  18. Borowczyk K, Tisończyk J et al (2012b) Metabolism and neurotoxicity of homocysteine thiolactone in mice: protective role of bleomycin hydrolase. Amino Acids. doi: 10.1007/s00726-011-1207-5
  19. Bouman HJ, Schömig E et al (2011) Paraoxonase-1 is a major determinant of clopidogrel efficacy. Nat Med 17(1):110–116CrossRefPubMedGoogle Scholar
  20. Brophy VH, Jarvik GP et al (2000) Analysis of paraoxonase (PON1) L55M status requires both genotype and phenotype. Pharmacogenetics 10(5):453–460CrossRefPubMedGoogle Scholar
  21. Camps J, Joven J et al (2011) Paraoxonase-1 and clopidogrel efficacy. Nat Med 17(9):1041–1042CrossRefPubMedGoogle Scholar
  22. Can Demirdöğen B, Türkanoğlu A et al (2008) Paraoxonase/arylesterase ratio, PON1 192Q/R polymorphism and PON1 status are associated with increased risk of ischemic stroke. Clin Biochem 41(1–2):1–9CrossRefPubMedGoogle Scholar
  23. Cao H, Girard-Globa A et al (1999) Paraoxonase protection of LDL against peroxidation is independent of its esterase activity towards paraoxon and is unaffected by the Q– > R genetic polymorphism. J Lipid Res 40(1):133–139PubMedGoogle Scholar
  24. Chang HH, Lin DP et al (2011) Intravitreal homocysteine-thiolactone injection leads to the degeneration of multiple retinal cells, including photoreceptors. Mol Vis 17:1946–1956PubMedGoogle Scholar
  25. Chwatko G, Jakubowski H (2005a) The determination of homocysteine-thiolactone in human plasma. Anal Biochem 337(2):271–277CrossRefPubMedGoogle Scholar
  26. Chwatko G, Jakubowski H (2005b) Urinary excretion of homocysteine-thiolactone in humans. Clin Chem 51(2):408–415CrossRefPubMedGoogle Scholar
  27. Chwatko G, Boers GHJ et al (2007) Mutations in methylenetetrahydrofolate reductase or cystathionine beta-syntase gene, or a high-methionine diet, increase homocysteine thiolactone levels in humans and mice. Faseb J 21(8):1707–1713CrossRefPubMedGoogle Scholar
  28. Coombes RH, Crow JA et al (2011) Relationship of human paraoxonase-1 serum activity and genotype with atherosclerosis in individuals from the Deep South. Pharmacogenet Genomics 21(12):867–875CrossRefPubMedGoogle Scholar
  29. Costa LG, Vitalone A et al (2005) Modulation of paraoxonase (PON1) activity. Biochem Pharmacol 69(4):541–550CrossRefPubMedGoogle Scholar
  30. Costa LG, Giordano G et al (2011) Pharmacological and dietary modulators of paraoxonase 1 (PON1) activity and expression: the hunt goes on. Biochem Pharmacol 81(3):337–344CrossRefPubMedGoogle Scholar
  31. Dansette PM, Rosi J et al (2011) Paraoxonase-1 and clopidogrel efficacy. Nat Med 17(9):1040–1041CrossRefPubMedGoogle Scholar
  32. Dansette PM, Rosi J et al (2012) Cytochromes P450 catalyze both steps of the major pathway of clopidogrel bioactivation, whereas paraoxonase catalyzes the formation of a minor thiol metabolite isomer. Chem Res Toxicol 25(2):348–356CrossRefPubMedGoogle Scholar
  33. Davies HG, Richter RJ et al (1996) The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin. Nat Genet 14(3):334–336CrossRefPubMedGoogle Scholar
  34. Demirdöğen BC, Demirkaya S et al (2009) Analysis of paraoxonase 1 (PON1) genetic polymorphisms and activities as risk factors for ischemic stroke in Turkish population. Cell Biochem Funct 27(8):558–567CrossRefPubMedGoogle Scholar
  35. Domagala TB, Lacinski M et al (2006) The correlation of homocysteine-thiolactonase activity of the paraoxonase (PON1) protein with coronary heart disease status. Cell Mol Biol 52(5):4–10PubMedGoogle Scholar
  36. Draganov DI, Teiber JF et al (2005) Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res 46(6):1239–1247CrossRefPubMedGoogle Scholar
  37. Dudman NP, Hicks C et al (1991) Homocysteine thiolactone disposal by human arterial endothelial cells and serum in vitro. Arterioscler Thromb 11(3):663–670CrossRefPubMedGoogle Scholar
  38. Dunet V, Ruiz J et al (2011) Effects of paraoxonase activity and gene polymorphism on coronary vasomotion. EJNMMI Res 1(1):27CrossRefPubMedGoogle Scholar
  39. Fan AZ, Yesupriya A et al (2010) Gene polymorphisms in association with emerging cardiovascular risk markers in adult women. BMC Med Genet 11:6CrossRefPubMedGoogle Scholar
  40. Ferretti G, Bacchetti T et al (2003) Effect of homocysteinylation on human high-density lipoproteins: a correlation with paraoxonase activity. Metabolism 52(2):146–151CrossRefPubMedGoogle Scholar
  41. Ferretti G, Bacchetti T et al (2010) Effect of homocysteinylation on high density lipoprotein physico-chemical properties. Chem Phys Lipids 163(2):228–235CrossRefPubMedGoogle Scholar
  42. Furlong CE, Holland N et al (2006) PON1 status of farm worker mothers and children as a predictor of organophosphate sensitivity. Pharmacogenet Genomics 16(3):183–190PubMedGoogle Scholar
  43. Gan KN, Smolen A et al (1991) Purification of human serum paraoxonase/arylesterase. Evidence for one esterase catalyzing both activities. Drug Metab Dispos 19(1):100–106PubMedGoogle Scholar
  44. Garin MC, James RW et al (1997) Paraoxonase polymorphism Met-Leu54 is associated with modified serum concentrations of the enzyme. A possible link between the paraoxonase gene and increased risk of cardiovascular disease in diabetes. J Clin Invest 99(1):62–66CrossRefPubMedGoogle Scholar
  45. Ghorbanihaghjo A, Javadzadeh A et al (2008) Lipoprotein(a), homocysteine, and retinal arteriosclerosis. Mol Vis 14:1692–1697PubMedGoogle Scholar
  46. Giusti B, Saracini C et al (2008) Genetic analysis of 56 polymorphisms in 17 genes involved in methionine metabolism in patients with abdominal aortic aneurysm. J Med Genet 45(11):721–730CrossRefPubMedGoogle Scholar
  47. Giusti B, Saracini C et al (2010) Early-onset ischaemic stroke: analysis of 58 polymorphisms in 17 genes involved in methionine metabolism. Thromb Haemost 104(2):231–242CrossRefPubMedGoogle Scholar
  48. Glowacki R, Jakubowski H (2004) Cross-talk between Cys(34) and lysine residues in human serum albumin revealed by N-homocysteinylation. J Biol Chem 279(12):10864–10871CrossRefPubMedGoogle Scholar
  49. Gong M, Garige M et al (2009) Quercetin up-regulates paraoxonase 1 gene expression with concomitant protection against LDL oxidation. Biochem Biophys Res Commun 379(4):1001–1004CrossRefPubMedGoogle Scholar
  50. Guéant-Rodriguez RM, Spada R et al (2011) Homocysteine is a determinant of ApoA-I and both are associated with ankle brachial index, in an ambulatory elderly population. Atherosclerosis 214(2):480–485CrossRefPubMedGoogle Scholar
  51. Gugliucci A, Kinugasa E et al (2011) Serum paraoxonase 1 (PON1) lactonase activity is lower in end-stage renal disease patients than in healthy control subjects and increases after hemodialysis. Clin Chem Lab Med 49(1):61–67CrossRefPubMedGoogle Scholar
  52. Gupta N, Binukumar BK et al (2011a) Serum paraoxonase-1 (PON1) activities (PONase/AREase) and polymorphisms in patients with type 2 diabetes mellitus in a North-West Indian population. Gene 487(1):88–95CrossRefPubMedGoogle Scholar
  53. Gupta N, Singh S et al (2011b) Paraoxonase 1 (PON1) polymorphisms, haplotypes and activity in predicting cad risk in North-West Indian Punjabis. PLoS ONE 6(5):e17805CrossRefPubMedGoogle Scholar
  54. Harel M, Aharoni A et al (2004) Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat Struct Mol Biol 11(5):412–419CrossRefPubMedGoogle Scholar
  55. Hassett C, Richter RJ et al (1991) Characterization of cDNA clones encoding rabbit and human serum paraoxonase: the mature protein retains its signal sequence. Biochemistry 30(42):10141–10149CrossRefPubMedGoogle Scholar
  56. Holven KB, Aukrust P et al (2008) The antiatherogenic function of HDL is impaired in hyperhomocysteinemic subjects. J Nutr 138(11):2070–2075CrossRefPubMedGoogle Scholar
  57. Humbert R, Adler DA et al (1993) The molecular basis of the human serum paraoxonase activity polymorphism. Nat Genet 3(1):73–76CrossRefPubMedGoogle Scholar
  58. Ikeda Y, Suehiro T et al (2007) Human serum paraoxonase concentration predicts cardiovascular mortality in hemodialysis patients. Clin Nephrol 67(6):358–365PubMedGoogle Scholar
  59. Isbilen E, Yilmaz H et al (2009) Association of paraoxonase 55 and 192 gene polymorphisms on serum homocysteine concentrations in preeclampsia. Folia Biol (Praha) 55(2):35–40Google Scholar
  60. Ishimine N, Usami Y et al (2010) Identification of N-homocysteinylated apolipoprotein AI in normal human serum. Ann Clin Biochem 47(Pt 5):453–459CrossRefPubMedGoogle Scholar
  61. Itahara T, Suehiro T et al (2000) Serum paraoxonase and arylesterase activities in hemodialysis patients. J Atheroscler Thromb 7(3):152–158PubMedGoogle Scholar
  62. Jakubowski H (1997) Metabolism of homocysteine thiolactone in human cell cultures—possible mechanism for pathological consequences of elevated homocysteine levels. J Biol Chem 272(3):1935–1942PubMedGoogle Scholar
  63. Jakubowski H (1999) Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels. Faseb J 13(15):2277–2283PubMedGoogle Scholar
  64. Jakubowski H (2000a) Calcium-dependent human serum homocysteine thiolactone hydrolase—a protective mechanism against protein s-homocysteinylation. J Biol Chem 275(6):3957–3962CrossRefPubMedGoogle Scholar
  65. Jakubowski H (2000b) Homocysteine thiolactone: metabolic origin and protein homocysteinylation in humans. J Nutr 130(2):377S–381SPubMedGoogle Scholar
  66. Jakubowski, H. (2008). Paraoxonase 1 (PON1), a junction between the metabolism of homocysteine and lipids. Paraoxonases Their Role Dis Dev Xenobiotic Metabol 6:87–102Google Scholar
  67. Jakubowski H (2010) The Role of Paraoxonase 1 in the Detoxification of Homocysteine Thiolactone. Paraoxonases Inflamm Infection Toxicol 660:113–127CrossRefGoogle Scholar
  68. Jakubowski H (2011) Quality control in tRNA charging—editing of homocysteine. Acta Biochim Pol 58(2):149–163PubMedGoogle Scholar
  69. Jakubowski H (2012) Quality control in tRNA charging. Wiley Interdiscip Rev RNA 3(3):295–310Google Scholar
  70. Jakubowski H, Zhang L et al (2000) Homocysteine thiolactone and protein homocysteinylation in human endothelial cells—implications for atherosclerosis. Circ Res 87(1):45–51CrossRefPubMedGoogle Scholar
  71. Jakubowski H, Ambrosius WT et al (2001) Genetic determinants of homocysteine thiolactonase activity in humans: implications for atherosclerosis. FEBS Lett 491(1–2):35–39CrossRefPubMedGoogle Scholar
  72. Jakubowski H, Boers GHJ et al (2008) Mutations in cystathionine beta-synthase or methylenetetrahydrofolate reductase gene increase N-homocysteinylated protein levels in humans. Faseb J 22(12):4071–4076CrossRefPubMedGoogle Scholar
  73. Jakubowski H, Perla-Kajan J et al (2009) Genetic or nutritional disorders in homocysteine or folate metabolism increase protein N-homocysteinylation in mice. Faseb J 23(6):1721–1727CrossRefPubMedGoogle Scholar
  74. Javadzadeh A, Ghorbanihaghjo A et al (2010) Plasma oxidized LDL and thiol-containing molecules in patients with exudative age-related macular degeneration. Mol Vis 16:2578–2584PubMedGoogle Scholar
  75. Javadzadeh A, Ghorbanihaghjo A et al (2012) Serum paraoxonase phenotype distribution in exudative age-related macular degeneration and its relationship to homocysteine and oxidized low-density lipoprotein. Retina 32(4):658–666CrossRefPubMedGoogle Scholar
  76. Kelso GJ, Stuart WD et al (1994) Apolipoprotein J is associated with paraoxonase in human plasma. Biochemistry 33(3):832–839CrossRefPubMedGoogle Scholar
  77. Khersonsky O, Tawfik DS (2005) Structure-reactivity studies of serum paraoxonase PON1 suggest that its native activity is lactonase. Biochemistry 44(16):6371–6382CrossRefPubMedGoogle Scholar
  78. Kimak E, Hałabiś M et al (2011) Association between moderately oxidized low-density lipoprotein and high-density lipoprotein particle subclass distribution in hemodialyzed and post-renal transplant patients. J Zhejiang Univ Sci B 12(5):365–371CrossRefPubMedGoogle Scholar
  79. Kosaka T, Yamaguchi M et al (2005) Investigation of the relationship between atherosclerosis and paraoxonase or homocysteine thiolactonase activity in patients with type 2 diabetes mellitus using a commercially available assay. Clin Chim Acta 359(1–2):156–162CrossRefPubMedGoogle Scholar
  80. Koubaa N, Nakbi A et al (2009) Association of homocysteine thiolactonase activity and PON1 polymorphisms with the severity of acute coronary syndrome. Clin Biochem 42(9):771–776CrossRefPubMedGoogle Scholar
  81. Kreutz RP, Nystrom P et al (2012) Influence of paraoxonase-1 Q192R and cytochrome P450 2C19 polymorphisms on clopidogrel response. Clin Pharmacol 4:13–20PubMedGoogle Scholar
  82. Lacinski M, Skorupski W et al (2004) Determinants of homocysteine-thiolactonase activity of the paraoxonase-1 (PON1) protein in humans. Cell Mol Biol (Noisy-le-grand) 50(8):885–893Google Scholar
  83. Lacinski M, Skorupski W et al (2004) Determinants of homocysteine-thiolactonase activity of the paraoxonase-1 (PON1) protein in humans. Cell Mol Biol 50(8):885–893PubMedGoogle Scholar
  84. Lakshman R, Garige M et al (2009) Is alcohol beneficial or harmful for cardioprotection? Genes Nutr 5(2):111–120Google Scholar
  85. Leviev I, Negro F et al (1997) Two alleles of the human paraoxonase gene produce different amounts of mRNA. An explanation for differences in serum concentrations of paraoxonase associated with the (Leu-Met54) polymorphism. Arterioscler Thromb Vasc Biol 17(11):2935–2939CrossRefPubMedGoogle Scholar
  86. Leviev I, Deakin S et al (2001) Decreased stability of the M54 isoform of paraoxonase as a contributory factor to variations in human serum paraoxonase concentrations. J Lipid Res 42(4):528–535PubMedGoogle Scholar
  87. Lewis JP, Shuldiner AR (2012) Paraoxonase 1 Q192R variant and clopidogrel efficacy: fact or fiction? Circ Cardiovasc Genet 5(2):153–155CrossRefPubMedGoogle Scholar
  88. Liao D, Tan H et al (2006) Hyperhomocysteinemia decreases circulating high-density lipoprotein by inhibiting apolipoprotein A-I Protein synthesis and enhancing HDL cholesterol clearance. Circ Res 99(6):598–606CrossRefPubMedGoogle Scholar
  89. Liu G, Nellaiappan K et al (1997) Irreversible inhibition of lysyl oxidase by homocysteine thiolactone and its selenium and oxygen analogues. Implications for homocystinuria. J Biol Chem 272(51):32370–32377CrossRefPubMedGoogle Scholar
  90. Mackness MI, Arrol S et al (1993) Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase. Atherosclerosis 104(1–2):129–135CrossRefPubMedGoogle Scholar
  91. Mackness B, Mackness MI et al (1998) Serum paraoxonase (PON1) 55 and 192 polymorphism and paraoxonase activity and concentration in non-insulin dependent diabetes mellitus. Atherosclerosis 139(2):341–349CrossRefPubMedGoogle Scholar
  92. Mackness B, Davies GK et al (2001) Paraoxonase status in coronary heart disease: are activity and concentration more important than genotype? Arterioscler Thromb Vasc Biol 21(9):1451–1457CrossRefPubMedGoogle Scholar
  93. Man BL, Baum L et al (2010) Genetic polymorphisms of Chinese patients with ischemic stroke and concurrent stenoses of extracranial and intracranial vessels. J Clin Neurosci 17(10):1244–1247CrossRefPubMedGoogle Scholar
  94. Marathe GK, Zimmerman GA et al (2003) Platelet-activating factor acetylhydrolase, and not paraoxonase-1, is the oxidized phospholipid hydrolase of high density lipoprotein particles. J Biol Chem 278(6):3937–3947CrossRefPubMedGoogle Scholar
  95. Marsillach J, Mackness B et al (2008) Immunohistochemical analysis of paraoxonases-1, 2, and 3 expression in normal mouse tissues. Free Radic Biol Med 45(2):146–157CrossRefPubMedGoogle Scholar
  96. Mikael LG, Genest J et al (2006) Elevated homocysteine reduces apolipoprotein A-I expression in hyperhomocysteinemic mice and in males with coronary artery disease. Circ Res 98(4):564–571CrossRefPubMedGoogle Scholar
  97. Mu X, Yu N et al (2012) Evaluation of a new substrate for measurement of serum PON arylesterase activity. Talanta 88:711–716CrossRefPubMedGoogle Scholar
  98. Oda MN, Bielicki JK et al (2002) Paraoxonase 1 overexpression in mice and its effect on high-density lipoproteins. Biochem Biophys Res Commun 290(3):921–927CrossRefPubMedGoogle Scholar
  99. Ohmori T, Yano Y et al (2012) Lack of association between serum paraoxonase-1 activity and residual platelet aggregation during dual anti-platelet therapy. Thromb Res 129(4):e36–e40CrossRefPubMedGoogle Scholar
  100. Perla J, Undas A et al (2004) Purification of antibodies against N-homocysteinylated proteins by affinity chromatography on N omega-homocysteinyl-aminohexyl-Agarose. J Chromatograph B-Anal Technol Biomed Life Sci 807(2):257–261CrossRefGoogle Scholar
  101. Perla-Kaján J, Jakubowski H (2010) Paraoxonase 1 protects against protein N-homocysteinylation in humans. FASEB J 24(3):931–936CrossRefPubMedGoogle Scholar
  102. Perla-Kajan J, Stanger O et al (2008) Immunohistochernical detection of N-homocysteinylated proteins in humans and mice. Biomed Pharmacother 62(7):473–479CrossRefPubMedGoogle Scholar
  103. Perna AF, Ingrosso D et al (2004) Homocysteine metabolism in renal failure. Curr Opin Clin Nutr Metab Care 7(1):53–57CrossRefPubMedGoogle Scholar
  104. Perna AF, Satta E et al (2006) Increased plasma protein homocysteinylation in hemodialysis patients. Kidney Int 69(5):869–876CrossRefPubMedGoogle Scholar
  105. Qujeq D, Omran TS et al (2001) Correlation between total homocysteine, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol in the serum of patients with myocardial infarction. Clin Biochem 34(2):97–101CrossRefPubMedGoogle Scholar
  106. Rajković MG, Rumora L et al (2010) Effect of non-genetic factors on paraoxonase 1 activity in patients undergoing hemodialysis. Clin Biochem 43(18):1375–1380CrossRefPubMedGoogle Scholar
  107. Reddy ST, Wadleigh DJ et al (2001) Human paraoxonase-3 is an HDL-associated enzyme with biological activity similar to paraoxonase-1 protein but is not regulated by oxidized lipids. Arterioscler Thromb Vasc Biol 21(4):542–547CrossRefPubMedGoogle Scholar
  108. Richter RJ, Jarvik GP et al (2010) Paraoxonase 1 status as a risk factor for disease or exposure. Adv Exp Med Biol 660:29–35CrossRefPubMedGoogle Scholar
  109. Rozenberg O, Shih DM et al (2005) Paraoxonase 1 (PON1) attenuates macrophage oxidative status: studies in PON1 transfected cells and in PON1 transgenic mice. Atherosclerosis 181(1):9–18CrossRefPubMedGoogle Scholar
  110. Rozenberg O, Shiner M et al (2008) Paraoxonase 1 (PON1) attenuates diabetes development in mice through its antioxidative properties. Free Radic Biol Med 44(11):1951–1959CrossRefPubMedGoogle Scholar
  111. Sauls DL, Lockhart E et al (2006) Modification of fibrinogen by homocysteine thiolactone increases resistance to fibrinolysis: a potential mechanism of the thrombotic tendency in hyperhomocysteinemia. Biochemistry 45(8):2480–2487CrossRefPubMedGoogle Scholar
  112. She ZG, Zheng W et al (2009) Human paraoxonase gene cluster transgenic overexpression represses atherogenesis and promotes atherosclerotic plaque stability in ApoE-null mice. Circ Res 104(10):1160–1168CrossRefPubMedGoogle Scholar
  113. Shih DM, Gu L et al (1998) Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature 394(6690):284–287CrossRefPubMedGoogle Scholar
  114. Shih DM, Xia YR et al (2000) Combined serum paraoxonase knockout/apolipoprotein E knockout mice exhibit increased lipoprotein oxidation and atherosclerosis. J Biol Chem 275(23):17527–17535CrossRefPubMedGoogle Scholar
  115. Shih DM, Xia YR et al (2007) Decreased obesity and atherosclerosis in human paraoxonase 3 transgenic mice. Circ Res 100(8):1200–1207CrossRefPubMedGoogle Scholar
  116. Shin BS, Oh SY et al (2008) The paraoxonase gene polymorphism in stroke patients and lipid profile. Acta Neurol Scand 117(4):237–243CrossRefPubMedGoogle Scholar
  117. Sodi A, Giambene B et al (2008) Atherosclerotic and thrombophilic risk factors in patients with recurrent central retinal vein occlusion. Eur J Ophthalmol 18(2):233–238PubMedGoogle Scholar
  118. Suehiro T, Ikeda Y et al (2002) Serum paraoxonase (PON1) concentration in patients undergoing hemodialysis. J Atheroscler Thromb 9(3):133–138CrossRefPubMedGoogle Scholar
  119. Suszynska J, Tisonczyk J et al (2010) Reduced homocysteine-thiolactonase activity in Alzheimer’s disease. J Alzheimers Dis 19(4):1177–1183PubMedGoogle Scholar
  120. Sztanek F, Seres I et al (2012) Decreased paraoxonase 1 (PON1) lactonase activity in hemodialyzed and renal transplanted patients. A novel cardiovascular biomarker in end-stage renal disease. Nephrol Dial Transplant. doi: 10.1093/ndt/gfr753
  121. Teiber JF, Draganov DI et al (2004) Purified human serum PON1 does not protect LDL against oxidation in the in vitro assays initiated with copper or AAPH. J Lipid Res 45(12):2260–2268CrossRefPubMedGoogle Scholar
  122. Türkeli H, Caycı T et al (2010) Paraoxonase-1 activity determination via paraoxon substrate yields no significant difference in mild hyperhomocysteinemia. Int J Cardiol 145(1):42–43CrossRefPubMedGoogle Scholar
  123. Tward A, Xia YR et al (2002) Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice. Circulation 106(4):484–490CrossRefPubMedGoogle Scholar
  124. Undas A, Perla J et al (2004) Autoantibodies against N-homocysteinylated proteins in humans—Implications for atherosclerosis. Stroke 35(6):1299–1304CrossRefPubMedGoogle Scholar
  125. Undas A, Stepien E et al (2006) Folic acid administration and antibodies against homocysteinylated proteins in subjects with hyperhomocysteinemia. Thromb Haemost 96(3):342–347PubMedGoogle Scholar
  126. Varga E, Seres I et al (2009) Serum cystatin C is a determinant of paraoxonase activity in hemodialyzed and renal transplanted patients. Dis Markers 26(3):141–148PubMedGoogle Scholar
  127. Vos E (2008) Homocysteine levels, paraoxonase 1 (PON1) activity, and cardiovascular risk. JAMA 300(2):168–169 (author reply 169)Google Scholar
  128. Wehr H, Bednarska-Makaruk M et al (2009) Paraoxonase activity and dementia. J Neurol Sci 283(1–2):107–108CrossRefPubMedGoogle Scholar
  129. Weijun G, Juming L et al (2008) Effects of plasma homocysteine levels on serum HTase/PON activity in patients with type 2 diabetes. Adv Ther 25(9):884–893CrossRefPubMedGoogle Scholar
  130. Zafiropoulos A, Linardakis M et al (2010) Paraoxonase 1 R/Q alleles are associated with differential accumulation of saturated versus 20:5n3 fatty acid in human adipose tissue. J Lipid Res 51(7):1991–2000CrossRefPubMedGoogle Scholar
  131. Zengi O, Karakas A et al (2011) Urinary 8-hydroxy-2′-deoxyguanosine level and plasma paraoxonase 1 activity with Alzheimer’s disease. Clin Chem Lab Med 50(3):529–534Google Scholar
  132. Zhao Y, Ma Y et al (2012) Association between PON1 activity and coronary heart disease risk: a meta-analysis based on 43 studies. Mol Genet Metab 105(1):141–148CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Biochemistry and BiotechnologyPoznań University of Life SciencesPoznanPoland
  2. 2.Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
  3. 3.Department of Microbiology and Molecular GeneticsUMDNJ-New Jersey Medical School, International Center for Public HealthNewarkUSA

Personalised recommendations