Amino Acids

, Volume 43, Issue 6, pp 2249–2263 | Cite as

The role of taurine in renal disorders

  • Xiaobin Han
  • Russell W. ChesneyEmail author
Invited Review


This article examines the actions of taurine on models of renal dysfunction, the potential mechanisms of taurine action and the possible clinical significance of these findings. Our laboratory has written previously on the role of taurine in renal function and we have focused upon the normal physiology of the kidney and on the mechanisms and regulation of the renal transport of taurine. This review is a distinct change of emphasis in that we describe a number of studies which have evaluated various aspects of renal dysfunction, including hypertension and proteinuria, specific glomerular and tubular disorders, acute and chronic renal conditions, urinary tract conditions including infection and nephrolithiasis, and diabetic nephropathy. The subject of chronic kidney disease and renal transplantation will also be examined relative to β amino acid. The studies evaluated will be mainly recent ones, recognizing that older reviews of the role of this taurine in the kidney are available.


Taurine Renal function Glomerular nephritis Acute kidney injury Diabetic nephropathy Chronic kidney disease 



The authors are grateful to Andrea Patters for assistance with the manuscript.


  1. Abdel-Hamid HZ (2010) Peroxisomal disorders. Accessed 11 May 2010
  2. Atanassova SS, Panchev P, Ivanova M (2010) Plasma levels and urinary excretion of amino acids by subjects with renal calculi. Amino Acids 38(5):1277–1282PubMedCrossRefGoogle Scholar
  3. Badary OA (1998) Taurine attenuates Fanconi syndrome induced by ifosfamide without compromising its antitumor activity. Oncol Res 10(7):355–360PubMedGoogle Scholar
  4. Battaglia FC, Regnault TR (2001) Placental transport and metabolism of amino acids. Placenta 22(2–3):145–161PubMedCrossRefGoogle Scholar
  5. Bergstrom J, Alvestrand A, Furst P, Lindholm B (1989) Sulphur amino acids in plasma and muscle in patients with chronic renal failure: evidence for taurine depletion. J Intern Med 226(3):189–194PubMedCrossRefGoogle Scholar
  6. Bounedjah O, Hamon L, Savarin P, Desforges B, Curmi PA, Pastre D (2012) Macromolecular crowding regulates assembly of mRNA stress granules after osmotic stress: new role for compatible osmolytes. J Biol Chem 287(4):2446–2458PubMedCrossRefGoogle Scholar
  7. Burg MB (1995) Molecular basis of osmotic regulation. Am J Physiol 268(6 Pt 2):F983–F996PubMedGoogle Scholar
  8. Buschmann T, Potapova O, Bar-Shira A, Ivanov VN, Fuchs SY, Henderson S, Fried VA, Minamoto T, Alarcon-Vargas D, Pincus MR, Gaarde WA, Holbrook NJ, Shiloh Y, Ronai Z (2001) Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol Cell Biol 21(8):2743–2754PubMedCrossRefGoogle Scholar
  9. Chen H, Condron C, Chen G, Moloney M, Bouchier-Hayes D (2009) Taurine attenuates endothelial cell injury induced by hypoxia–reoxygenation. Paper presented at the 17th international taurine meeting “Taurine: a wonder molecule”, Miami, FL, Dec 14–19, 2009Google Scholar
  10. Chesney RW, Carpenter MA, Moxey-Mims M, Nyberg L, Greenfield SP, Hoberman A, Keren R, Matthews R, Matoo TK (2008) Randomized intervention for children with vesicoureteral reflux (RIVUR): background commentary of RIVUR investigators. Pediatrics 122(Suppl 5):S233–S239PubMedCrossRefGoogle Scholar
  11. Chesney RW, Han X, Patters AB (2010) Taurine and the renal system. J Biomed Sci 17(Suppl 1):S4PubMedCrossRefGoogle Scholar
  12. Chesney RW, Patters AB, Han X (2011) Taurine and the kidneys. In: El Idrissi A, L’Amoreaux W (eds) Taurine in health and disease. Transworld Research Network, KeralaGoogle Scholar
  13. Chesney RW, Scriver CR, Mohyuddin F (1976) Localization of the membrane defect in transepithelial transport of taurine by parallel studies in vivo and in vitro in hypertaurinuric mice. J Clin Invest 57(1):183–193PubMedCrossRefGoogle Scholar
  14. Clayton PT, Lake BD, Hall NA, Shortland DB, Carruthers RA, Lawson AM (1987) Plasma bile acids in patients with peroxisomal dysfunction syndromes: analysis by capillary gas chromatography–mass spectrometry. Eur J Pediatr 146(2):166–173PubMedCrossRefGoogle Scholar
  15. Condron C, Casey RG, Kehoe S, Toomey D, Creagh T, Bouchier-Hayes DJ (2010) Taurine modulates neutrophil function but potentiates uropathogenic E. coli infection in the murine bladder. Urol Res 38(4):215–222PubMedCrossRefGoogle Scholar
  16. Condron CM, Toomey DM, Casey RG, Creagh T, Bouchier-Hayes DJ (2004) Taurine protects against PMN dysfunction and death in urine. Urol Res 32(5):338–345PubMedCrossRefGoogle Scholar
  17. Coppes MJ, Campbell CE, Williams BR (1993) The role of WT1 in Wilms tumorigenesis. FASEB J 7(10):886–895PubMedGoogle Scholar
  18. Cusworth DC, Dent CE (1960) Renal clearances of amino acids in normal adults and in patients with aminoaciduria. Biochem J 74:550–561PubMedGoogle Scholar
  19. Dabbagh S, Gusowski N, Chesney R, Falsetti G, Ellis M, Ellis D (1989) Cyclic AMP does not alter taurine accumulation by rat renal brush border membrane vesicles. Biochem Med Metab Biol 42(2):132–145PubMedCrossRefGoogle Scholar
  20. Dabbagh S, Gusowski N, Padilla M, Theissen M, Chesney RW (1990) Perturbation of renal amino acid transport by brush border membrane vesicles in the vitamin D-deficient rat. Biochem Med Metab Biol 44(1):64–76PubMedCrossRefGoogle Scholar
  21. Das J, Ghosh J, Manna P, Sil PC (2010) Taurine protects acetaminophen-induced oxidative damage in mice kidney through APAP urinary excretion and CYP2E1 inactivation. Toxicology 269(1):24–34PubMedCrossRefGoogle Scholar
  22. Das J, Sil PC (2012) Taurine ameliorates alloxan-induced diabetic renal injury, oxidative stress-related signaling pathways and apoptosis in rats. Amino Acids. [Epub ahead of print]Google Scholar
  23. Dawson R Jr, Liu S, Jung B, Messina S, Eppler B (2000) Effects of high salt diets and taurine on the development of hypertension in the stroke-prone spontaneously hypertensive rat. Amino Acids 19(3–4):643–665PubMedCrossRefGoogle Scholar
  24. Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76(6):1025–1037PubMedCrossRefGoogle Scholar
  25. Desforges B, Savarin P, Bounedjah O, Delga S, Hamon L, Curmi PA, Pastre D (2011) Gap junctions favor normal rat kidney epithelial cell adaptation to chronic hypertonicity. Am J Physiol Cell Physiol 301(3):C705–C716PubMedCrossRefGoogle Scholar
  26. Eldin AA, Shaheen AA, Abd Elgawad HM, Shehata NI (2008) Protective effect of taurine and quercetin against renal dysfunction associated with the combined use of gentamicin and diclofenac. Indian J Biochem Biophys 45(5):332–340PubMedGoogle Scholar
  27. Evans RW, Powers RW, Ness RB, Cropcho LJ, Daftary AR, Harger GF, Vergona R, Finegold DN (2003) Maternal and fetal amino acid concentrations and fetal outcomes during pre-eclampsia. Reproduction 125(6):785–790PubMedCrossRefGoogle Scholar
  28. Falk RJ, Jennette JC (1988) Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N Engl J Med 318(25):1651–1657PubMedCrossRefGoogle Scholar
  29. Ferdinandusse S, Overmars H, Denis S, Waterham HR, Wanders RJ, Vreken P (2001) Plasma analysis of di- and trihydroxycholestanoic acid diastereoisomers in peroxisomal alpha-methylacyl-CoA racemase deficiency. J Lipid Res 42(1):137–141PubMedGoogle Scholar
  30. Fleck C, Engelbert K (1998) The hepato-renal syndrome: renal amino acid transport in bile duct ligated rats (DL)—influence of treatment with triiodothyronine or dexamethasone on renal amino acid handling in amino acid loaded rats. Exp Toxicol Pathol 50(4–6):356–364PubMedCrossRefGoogle Scholar
  31. Flora SJ, Pande M, Bhadauria S, Kannan GM (2004) Combined administration of taurine and meso 2,3-dimercaptosuccinic acid in the treatment of chronic lead intoxication in rats. Hum Exp Toxicol 23(4):157–166PubMedCrossRefGoogle Scholar
  32. Foreman JW, Bowring MA, Lee J, States B, Segal S (1987) Effect of cystine dimethylester on renal solute handling and isolated renal tubule transport in the rat: a new model of the Fanconi syndrome. Metabolism 36(12):1185–1191PubMedCrossRefGoogle Scholar
  33. Friedman AL, Jax DK, Chesney RW (1981) Developmental aspects of renal beta-amino acid transport. III. Ontogeny of transport in isolated renal tubule segments. Pediatr Res 15(1):10–13PubMedCrossRefGoogle Scholar
  34. Fuchs SY, Adler V, Buschmann T, Yin Z, Wu X, Jones SN, Ronai Z (1998) JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes Dev 12(17):2658–2663PubMedCrossRefGoogle Scholar
  35. Fuchs SY, Xie B, Adler V, Fried VA, Davis RJ, Ronai Z (1997) c-Jun NH2-terminal kinases target the ubiquitination of their associated transcription factors. J Biol Chem 272(51):32163–32168PubMedCrossRefGoogle Scholar
  36. Gallieni M, Chiarelli G, Olivi L, Cozzolino M, Cusi D (2011) Unsuccessful application of taurolidine in the treatment of fungal peritonitis in peritoneal dialysis. Clin Nephrol 75(1):70–73PubMedGoogle Scholar
  37. Gardner RJ, Brown N (1976) Lowe’s syndrome: identification of carriers by lens examination. J Med Genet 13(6):449–454PubMedCrossRefGoogle Scholar
  38. Gines P, Arroyo V (1999) Hepatorenal syndrome. J Am Soc Nephrol 10(8):1833–1839PubMedGoogle Scholar
  39. Gomez RA, Tufro-McReddie A, Everett AD, Pentz ES (1993) Ontogeny of renin and AT1 receptor in the rat. Pediatr Nephrol 7(5):635–638PubMedCrossRefGoogle Scholar
  40. Guan X, Dei-Anane G, Liang R, Gross ML, Nickkholgh A, Kern M, Ludwig J, Zeier M, Buchler MW, Schmidt J, Schemmer P (2008) Donor preconditioning with taurine protects kidney grafts from injury after experimental transplantation. J Surg Res 146(1):127–134PubMedCrossRefGoogle Scholar
  41. Gunther R, Silbernagl S, Deetjen P (1979) Maleic acid induced aminoaciduria, studied by free flow micropuncture and continuous microperfusion. Pflugers Arch 382(2):109–114PubMedGoogle Scholar
  42. Guz G, Oz E, Lortlar N, Ulusu NN, Nurlu N, Demirogullari B, Omeroglu S, Sert S, Karasu C (2007) The effect of taurine on renal ischemia/reperfusion injury. Amino Acids 32(3):405–411PubMedCrossRefGoogle Scholar
  43. Hagar HH, El Etter E, Arafa M (2006) Taurine attenuates hypertension and renal dysfunction induced by cyclosporine A in rats. Clin Exp Pharmacol Physiol 33(3):189–196PubMedCrossRefGoogle Scholar
  44. Han X, Chesney RW (2003) Regulation of taurine transporter gene (TauT) by WT1. FEBS Lett 540(1–3):71–76PubMedCrossRefGoogle Scholar
  45. Han X, Chesney RW (2005) Regulation of TauT by cisplatin in LLC-PK1 renal cells. Pediatr Nephrol 20(8):1067–1072PubMedCrossRefGoogle Scholar
  46. Han X, Chesney RW (2006) Mechanisms of regulation of taurine transporter activity: a complex interplay of regulatory systems. Adv Exp Med Biol 583:79–90PubMedCrossRefGoogle Scholar
  47. Han X, Chesney RW (2009a) Mechanism of TauT in protecting against cisplatin-induced kidney injury (AKI). Adv Exp Med Biol 643:105–112PubMedCrossRefGoogle Scholar
  48. Han X, Chesney RW (2009b) TauT protects against cisplatin-induced acute kidney injury (AKI) established in a TauT transgenic mice model. Adv Exp Med Biol 643:113–122PubMedCrossRefGoogle Scholar
  49. Han X, Chesney RW (2010) Stress-responsive gene TauT and acute kidney injury. J Biomed Sci 17(Suppl 1):S28PubMedCrossRefGoogle Scholar
  50. Han X, Patters AB, Jones DP, Zelikovic I, Chesney RW (2006) The taurine transporter: mechanisms of regulation. Acta Physiol (Oxf) 187(1–2):61–73CrossRefGoogle Scholar
  51. Han X, Yue J, Chesney RW (2009) Functional TauT protects against acute kidney injury. J Am Soc Nephrol 20(6):1323–1332PubMedCrossRefGoogle Scholar
  52. Handler JS, Kwon HM (1993) Regulation of renal cell organic osmolyte transport by tonicity. Am J Physiol 265(6 Pt 1):C1449–C1455PubMedGoogle Scholar
  53. Hansen SH (2001) The role of taurine in diabetes and the development of diabetic complications. Diabetes Metab Res Rev 17(5):330–346PubMedCrossRefGoogle Scholar
  54. Higo S, Miyata S, Jiang QY, Kitazawa R, Kitazawa S, Kasuga M (2008) Taurine administration after appearance of proteinuria retards progression of diabetic nephropathy in rats. Kobe J Med Sci 54(1):E35–E45PubMedGoogle Scholar
  55. Hu J, Xu X, Yang J, Wu G, Sun C, Lv Q (2009) Antihypertensive effect of taurine in rat. Adv Exp Med Biol 643:75–84PubMedCrossRefGoogle Scholar
  56. Huang JS, Chuang LY, Guh JY, Huang YJ (2009) Effects of nitric oxide and antioxidants on advanced glycation end products-induced hypertrophic growth in human renal tubular cells. Toxicol Sci 111(1):109–119PubMedCrossRefGoogle Scholar
  57. Huang JS, Chuang LY, Guh JY, Huang YJ, Hsu MS (2007) Antioxidants attenuate high glucose-induced hypertrophic growth in renal tubular epithelial cells. Am J Physiol Renal Physiol 293(4):F1072–F1082PubMedCrossRefGoogle Scholar
  58. Huang JS, Chuang LY, Guh JY, Yang YL, Hsu MS (2008) Effect of taurine on advanced glycation end products-induced hypertrophy in renal tubular epithelial cells. Toxicol Appl Pharmacol 233(2):220–226PubMedCrossRefGoogle Scholar
  59. Ito T, Fujio Y, Schaffer SW, Azuma J (2009) Involvement of transcriptional factor TonEBP in the regulation of the taurine transporter in the cardiomyocyte. Adv Exp Med Biol 643:523–532PubMedCrossRefGoogle Scholar
  60. Jeon SH, Park HM, Kim SJ, Lee MY, Kim GB, Rahman MM, Woo JN, Kim IS, Kim JS, Kang HS (2010) Taurine reduces FK506-induced generation of ROS and activation of JNK and Bax in Madin Darby canine kidney cells. Hum Exp Toxicol 29(8):627–633PubMedCrossRefGoogle Scholar
  61. Jones DP, Chesney RW (1992) Development of tubular function. Clin Perinatol 19(1):33–57PubMedGoogle Scholar
  62. Jung BC, Laidlaw SA, Kopple JD (1991) Taurine levels in plasma and blood cells in patients undergoing routine maintenance hemodialysis. Am J Kidney Dis 18(1):74–79PubMedGoogle Scholar
  63. Kim CD, Kim EY, Yoo H, Lee JW, Ryu do H, Noh DW, Park SH, Kim YL, Hwang GS, Kwon TH (2010) Metabonomic analysis of serum metabolites in kidney transplant recipients with cyclosporine A- or tacrolimus-based immunosuppression. Transplantation 90(7):748–756PubMedCrossRefGoogle Scholar
  64. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77(5):598–625PubMedCrossRefGoogle Scholar
  65. Koeners MP, Braam B, van der Giezen DM, Goldschmeding R, Joles JA (2010) Perinatal micronutrient supplements ameliorate hypertension and proteinuria in adult fawn-hooded hypertensive rats. Am J Hypertens 23(7):802–808PubMedCrossRefGoogle Scholar
  66. Koya D, Hayashi K, Kitada M, Kashiwagi A, Kikkawa R, Haneda M (2003) Effects of antioxidants in diabetes-induced oxidative stress in the glomeruli of diabetic rats. J Am Soc Nephrol 14(8 Suppl 3):S250–S253PubMedCrossRefGoogle Scholar
  67. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74(4):679–691PubMedCrossRefGoogle Scholar
  68. Kuligowski MP, Kitching AR, Hickey MJ (2006) Leukocyte recruitment to the inflamed glomerulus: a critical role for platelet-derived P-selectin in the absence of rolling. J Immunol 176(11):6991–6999PubMedGoogle Scholar
  69. Lawson AM, Madigan MJ, Shortland D, Clayton PT (1986) Rapid diagnosis of Zellweger syndrome and infantile Refsum’s disease by fast atom bombardment—mass spectrometry of urine bile salts. Clin Chim Acta 161(2):221–231PubMedCrossRefGoogle Scholar
  70. Li CY, Deng YL, Sun BH (2009) Taurine protected kidney from oxidative injury through mitochondrial-linked pathway in a rat model of nephrolithiasis. Urol Res 37(4):211–220PubMedCrossRefGoogle Scholar
  71. Lian X, Yang L, Chen Q (2003) Effects of taurine on platelet activating factor in rats with Masugi glomerulonephritis. J Chinese Microcirc 7(3):151–153Google Scholar
  72. Lin S, Yang J, Wu G, Liu M, Luan X, Lv Q, Zhao H, Hu J (2010) Preventive effect of taurine on experimental type II diabetic nephropathy. J Biomed Sci 17(Suppl 1):S46PubMedCrossRefGoogle Scholar
  73. Lindheimer MD, Cunnigham FG, Roberts JM, Chesney L (1999) Hypertension in pregnancy. Chesley’s hypertensive disorders in pregnancy. Appleton & Lange, StamfordGoogle Scholar
  74. MacLellan DL, Mataija D, Doucette A, Huang W, Langlois C, Trottier G, Burton IW, Walter JA, Karakach TK (2011) Alterations in urinary metabolites due to unilateral ureteral obstruction in a rodent model. Mol BioSyst 7(7):2181–2188PubMedCrossRefGoogle Scholar
  75. McKusick VA (2011) #214100 Zellweger syndrome; ZS. Accessed 11 Oct 2011
  76. Michalk DV, Hoffmann B, Minor T (2003) Taurine reduces renal ischemia/reperfusion injury in the rat. Adv Exp Med Biol 526:49–56PubMedCrossRefGoogle Scholar
  77. Moss AH, Gabow PA, Kaehny WD, Goodman SI, Haut LL (1980) Fanconi’s syndrome and distal renal tubular acidosis after glue sniffing. Ann Intern Med 92(1):69–70PubMedGoogle Scholar
  78. Mozaffari MS (2003) Taurine modulation of renal excretory function. Thai J Physiol Sci 16(3):83–90Google Scholar
  79. Mozaffari MS, Abdelsayed R, Patel C, Wimborne H, Liu JY, Schaffer SW (2010) Differential effects of taurine treatment and taurine deficiency on the outcome of renal ischemia reperfusion injury. J Biomed Sci 17(Suppl 1):S32PubMedCrossRefGoogle Scholar
  80. Mozaffari MS, Miyata N, Schaffer SW (2003) Effects of taurine and enalapril on kidney function of the hypertensive glucose-intolerant rat. Am J Hypertens 16(8):673–680PubMedCrossRefGoogle Scholar
  81. Mozaffari MS, Patel C, Abdelsayed R, Schaffer SW (2006) Accelerated NaCl-induced hypertension in taurine-deficient rat: role of renal function. Kidney Int 70(2):329–337PubMedCrossRefGoogle Scholar
  82. Mozaffari MS, Schaffer D (2001) Taurine modulates arginine vasopressin-mediated regulation of renal function. J Cardiovasc Pharmacol 37(6):742–750PubMedCrossRefGoogle Scholar
  83. Mozaffari MS, Schaffer SW (2002) Chronic taurine treatment ameliorates reduction in saline-induced diuresis and natriuresis. Kidney Int 61(5):1750–1759PubMedCrossRefGoogle Scholar
  84. Mozaffari MS, Warren BK, Azuma J, Schaffer SW (1998) Renal excretory responses of taurine-depleted rats to hypotonic and hypertonic saline infusion. Amino Acids 15(1–2):109–116PubMedCrossRefGoogle Scholar
  85. Mukherjee S (2011) Hepatorenal syndrome. Accessed 25 Oct 2011
  86. Nagl M, Pfausler B, Schmutzhard E, Fille M, Gottardi W (1998) Tolerance and bactericidal action of N-chlorotaurine in a urinary tract infection by an omniresistant Pseudomonas aeruginosa. Zentralbl Bakteriol 288(2):217–223PubMedCrossRefGoogle Scholar
  87. Nara Y, Yamori Y, Lovenberg W (1978) Effect of dietary taurine on blood pressure in spontaneously hypertensive rats. Biochem Pharmacol 27(23):2689–2692PubMedCrossRefGoogle Scholar
  88. Ng CK, Chan MH, Tai MH, Lam CW (2007) Hepatorenal syndrome. Clin Biochem Rev 28(1):11–17PubMedGoogle Scholar
  89. Nishimura H, Ikehara O, Naito T, Higuchi C, Sanaka T (2009) Evaluation of taurine as an osmotic agent for peritoneal dialysis solution. Perit Dial Int 29(2):204–216PubMedGoogle Scholar
  90. Odobasic D, Kitching AR, Semple TJ, Holdsworth SR (2007) Endogenous myeloperoxidase promotes neutrophil-mediated renal injury, but attenuates T cell immunity inducing crescentic glomerulonephritis. J Am Soc Nephrol 18(3):760–770PubMedCrossRefGoogle Scholar
  91. Parikh CR, Devarajan P, Zappitelli M, Sint K, Thiessen-Philbrook H, Li S, Kim RW, Koyner JL, Coca SG, Edelstein CL, Shlipak MG, Garg AX, Krawczeski CD (2011) Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J Am Soc Nephrol 22(9):1748–1757PubMedCrossRefGoogle Scholar
  92. Perfumo F, Canepa A, Divino Filho JC, Nilsson E, Carrea A, Verrina E, Gusmano R, Bergstrom J (1994) Muscle and plasma amino acids and nutritional status in kidney-transplanted children. Nephrol Dial Transplant 9(12):1778–1785PubMedGoogle Scholar
  93. Pritchard-Jones K, Fleming S, Davidson D, Bickmore W, Porteous D, Gosden C, Bard J, Buckler A, Pelletier J, Housman D et al (1990) The candidate Wilms’ tumour gene is involved in genitourinary development. Nature 346(6280):194–197PubMedCrossRefGoogle Scholar
  94. Romick-Rosendale LE, Brunner HI, Bennett MR, Mina R, Nelson S, Petri M, Kiani A, Devarajan P, Kennedy MA (2011) Identification of urinary metabolites that distinguish membranous lupus nephritis from proliferative lupus nephritis and focal segmental glomerulosclerosis. Arthritis Res Ther 13(6):R199PubMedCrossRefGoogle Scholar
  95. Rovetta F, Stacchiotti A, Consiglio A, Cadei M, Grigolato PG, Lavazza A, Rezzani R, Aleo MF (2012) ER signaling regulation drives the switch between autophagy and apoptosis in NRK-52E cells exposed to cisplatin. Exp Cell Res 318(3):238–250PubMedCrossRefGoogle Scholar
  96. Roy A, Manna P, Sil PC (2009) Prophylactic role of taurine on arsenic mediated oxidative renal dysfunction via MAPKs/NF-kappaB and mitochondria dependent pathways. Free Radic Res 43(10):995–1007PubMedCrossRefGoogle Scholar
  97. Roysommuti S, Malila P, Jirakulsomchok D, Wyss JM (2010a) Adult renal function is modified by perinatal taurine status in conscious male rats. J Biomed Sci 17(Suppl 1):S31PubMedCrossRefGoogle Scholar
  98. Roysommuti S, Malila P, Lerdweeraphon W, Jirakulsomchok D, Wyss JM (2010b) Perinatal taurine exposure alters renal potassium excretion mechanisms in adult conscious rats. J Biomed Sci 17(Suppl 1):S29PubMedCrossRefGoogle Scholar
  99. Roysommuti S, Suwanich A, Lerdweeraphon W, Thaeomor A, Jirakulsomchok D, Wyss JM (2009) Sex dependent effects of perinatal taurine exposure on the arterial pressure control in adult offspring. Adv Exp Med Biol 643:135–144PubMedCrossRefGoogle Scholar
  100. Saleem S, Dai Z, Coelho SN, Konieczny BT, Assmann KJ, Baddoura FK, Lakkis FG (1998) IL-4 is an endogenous inhibitor of neutrophil influx and subsequent pathology in acute antibody-mediated inflammation. J Immunol 160(2):979–984PubMedGoogle Scholar
  101. Satake M, Ikarashi N, Kagami M, Ogiue N, Toda T, Kobayashi Y, Ochiai W, Sugiyama K (2010) Increases in the expression levels of aquaporin-2 and aquaporin-3 in the renal collecting tubules alleviate dehydration associated with polyuria in diabetes mellitus. Biol Pharm Bull 33(12):1965–1970PubMedCrossRefGoogle Scholar
  102. Sato Y, Ogata E, Fujita T (1991) Hypotensive action of taurine in DOCA-salt rats—involvement of sympathoadrenal inhibition and endogenous opiate. Jpn Circ J 55(5):500–508PubMedCrossRefGoogle Scholar
  103. Satoh H, Kang J (2009) Modulation by taurine of human arterial stiffness and wave reflection. Adv Exp Med Biol 643:47–55PubMedCrossRefGoogle Scholar
  104. Schmitz V, Klawitter J, Bendrick-Peart J, Schoening W, Puhl G, Haschke M, Klawitter J, Consoer J, Rivard CJ, Chan L, Tran ZV, Leibfritz D, Christians U (2009) Metabolic profiles in urine reflect nephrotoxicity of sirolimus and cyclosporine following rat kidney transplantation. Nephron Exp Nephrol 111(4):e80–e91PubMedCrossRefGoogle Scholar
  105. Schoffl I, Kothmann JF, Schoffl V, Rupprecht HD, Rupprecht T (2011) “Vodka energy”: too much for the adolescent nephron? Pediatrics 128(1):e227–e231PubMedCrossRefGoogle Scholar
  106. Shah CB, Mittelman MW, Costerton JW, Parenteau S, Pelak M, Arsenault R, Mermel LA (2002) Antimicrobial activity of a novel catheter lock solution. Antimicrob Agents Chemother 46(6):1674–1679PubMedCrossRefGoogle Scholar
  107. Shi X, Yao D, Chen C (2012) Identification of N-acetyltaurine as a novel metabolite of ethanol through metabolomics-guided biochemical analysis. J Biol Chem 287(9):6336–6349Google Scholar
  108. Stein CS, Yancey PH, Martins I, Sigmund RD, Stokes JB, Davidson BL (2010) Osmoregulation of ceroid neuronal lipofuscinosis type 3 in the renal medulla. Am J Physiol Cell Physiol 298(6):C1388–C1400PubMedCrossRefGoogle Scholar
  109. Suliman ME, Barany P, Filho JC, Lindholm B, Bergstrom J (2002a) Accumulation of taurine in patients with renal failure. Nephrol Dial Transplant 17(3):528–529PubMedCrossRefGoogle Scholar
  110. Suliman ME, Stenvinkel P, Heimburger O, Barany P, Lindholm B, Bergstrom J (2002b) Plasma sulfur amino acids in relation to cardiovascular disease, nutritional status, and diabetes mellitus in patients with chronic renal failure at start of dialysis therapy. Am J Kidney Dis 40(3):480–488PubMedCrossRefGoogle Scholar
  111. Thaeomor A, Wyss JM, Jirakulsomchok D, Roysommuti S (2010) High sugar intake via the renin–angiotensin system blunts the baroreceptor reflex in adult rats that were perinatally depleted of taurine. J Biomed Sci 17(Suppl 1):S30PubMedCrossRefGoogle Scholar
  112. Tipping PG, Huang XR, Qi M, Van GY, Tang WW (1998) Crescentic glomerulonephritis in CD4- and CD8-deficient mice. Requirement for CD4 but not CD8 cells. Am J Pathol 152(6):1541–1548PubMedGoogle Scholar
  113. Trachtman H, Del Pizzo R, Futterweit S, Levine D, Rao PS, Valderrama E, Sturman JA (1992) Taurine attenuates renal disease in chronic puromycin aminonucleoside nephropathy. Am J Physiol 262(1 Pt 2):F117–F123PubMedGoogle Scholar
  114. Trachtman H, Futterweit S, Maesaka J, Ma C, Valderrama E, Fuchs A, Tarectecan AA, Rao PS, Sturman JA, Boles TH et al (1995) Taurine ameliorates chronic streptozocin-induced diabetic nephropathy in rats. Am J Physiol 269(3 Pt 2):F429–F438PubMedGoogle Scholar
  115. Tyagi R, Rana P, Gupta M, Khan AR, Bhatnagar D, Bhalla PJ, Chaturvedi S, Tripathi RP, Khushu S (2011) Differential biochemical response of rat kidney towards low and high doses of NiCl(2) as revealed by NMR spectroscopy. J Appl Toxicol. doi: 10.1002/jat.1730. [Epub ahead of print]
  116. Une M, Tazawa Y, Tada K, Hoshita T (1987) Occurrence of both (25R)- and (25S)-3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acids in urine from an infant with Zellweger’s syndrome. J Biochem 102(6):1525–1530PubMedGoogle Scholar
  117. United States Renal Data System (2011)
  118. Venkatesan N, Venkatesan P, Karthikeyan J, Arumugam V (1997) Protection by taurine against adriamycin-induced proteinuria and hyperlipidemia in rats. Proc Soc Exp Biol Med 215(2):158–164PubMedGoogle Scholar
  119. Wang L, Zhang L, Yu Y, Wang Y, Niu N (2008) The protective effects of taurine against early renal injury in STZ-induced diabetic rats, correlated with inhibition of renal LOX-1-mediated ICAM-1 expression. Ren Fail 30(8):763–771PubMedCrossRefGoogle Scholar
  120. Wang SS, Devuyst O, Courtoy PJ, Wang XT, Wang H, Wang Y, Thakker RV, Guggino S, Guggino WB (2000) Mice lacking renal chloride channel, CLC-5, are a model for Dent’s disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis. Hum Mol Genet 9(20):2937–2945PubMedCrossRefGoogle Scholar
  121. Wingenfeld P, Gehrmann U, Strubind S, Minor T, Isselhard W, Michalk DV (1996) Long-lasting hypoxic preservation of porcine kidney cells. Beneficial effect of taurine on viability and metabolism in a simplified transplantation model. Adv Exp Med Biol 403:203–212PubMedGoogle Scholar
  122. Wingenfeld P, Minor T, Gehrmann U, Strubind S, Isselhard W, Michalk D (1995) Hypoxic cellular deterioration and its prevention by the amino acid taurine in a transplantation model with renal tubular cells (LLC-PK1). In Vitro Cell Dev Biol Anim 31(7):483–486PubMedCrossRefGoogle Scholar
  123. Winiarska K, Szymanski K, Gorniak P, Dudziak M, Bryla J (2009) Hypoglycaemic, antioxidative and nephroprotective effects of taurine in alloxan diabetic rabbits. Biochimie 91(2):261–270PubMedCrossRefGoogle Scholar
  124. Xiong X, Demianczuk NN, Saunders LD, Wang FL, Fraser WD (2002) Impact of preeclampsia and gestational hypertension on birth weight by gestational age. Am J Epidemiol 155(3):203–209PubMedCrossRefGoogle Scholar
  125. Yao HT, Lin P, Chang YW, Chen CT, Chiang MT, Chang L, Kuo YC, Tsai HT, Yeh TK (2009) Effect of taurine supplementation on cytochrome P450 2E1 and oxidative stress in the liver and kidneys of rats with streptozotocin-induced diabetes. Food Chem Toxicol 47(7):1703–1709PubMedCrossRefGoogle Scholar
  126. Zelikovic I, Chesney RW (1989a) Ionic requirements for amino acid transport. Am J Kidney Dis 14(4):313–316PubMedGoogle Scholar
  127. Zelikovic I, Chesney RW (1989b) Sodium-coupled amino acid transport in renal tubule. Kidney Int 36(3):351–359PubMedCrossRefGoogle Scholar
  128. Zelikovic I, Chesney RW, Friedman AL, Ahlfors CE (1990) Taurine depletion in very low birth weight infants receiving prolonged total parenteral nutrition: role of renal immaturity. J Pediatr 116(2):301–306PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of PediatricsThe University of Tennessee Health Science Center, and the Children’s Foundation Research Institute at Le Bonheur Children’s HospitalMemphisUSA

Personalised recommendations