Amino Acids

, Volume 43, Issue 6, pp 2301–2311 | Cite as

l-Valine production with minimization of by-products’ synthesis in Corynebacterium glutamicum and Brevibacterium flavum

  • Xiaohu Hou
  • Xinde Chen
  • Yue Zhang
  • He Qian
  • Weiguo Zhang
Original Article


Corynebacterium glutamicum ATCC13032 and Brevibacterium flavum JV16 were engineered for l-valine production by over-expressing ilvEBNrC genes at 31 °C in 72 h fermentation. Different strategies were carried out to reduce the by-products’ accumulation in l-valine fermentation and also to increase the availability of precursor for l-valine biosynthesis. The native promoter of ilvA of C. glutamicum was replaced with a weak promoter MPilvA (P-ilvAM1CG) to reduce the biosynthetic rate of l-isoleucine. Effect of different relative dissolved oxygen on l-valine production and by-products’ formation was recorded, indicating that 15 % saturation may be the most appropriate relative dissolved oxygen for l-valine fermentation with almost no l-lactic acid and l-glutamate formed. To minimize l-alanine accumulation, alaT and/or avtA was inactivated in C. glutamicum and B. flavum, respectively. Compared to high concentration of l-alanine accumulated by alaT inactivated strains harboring ilvEBNrC genes, l-alanine concentration was reduced to 0.18 g/L by C. glutamicum ATCC13032MPilvAavtA pDXW-8-ilvEBNrC, and 0.22 g/L by B. flavum JV16avtA::Cm pDXW-8-ilvEBNrC. Meanwhile, l-valine production and conversion efficiency were enhanced to 31.15 g/L and 0.173 g/g by C. glutamicum ATCC13032MPilvAavtA pDXW-8-ilvEBNrC, 38.82 g/L and 0.252 g/g by B. flavum JV16avtA::Cm pDXW-8-ilvEBNrC. This study provides combined strategies to improve l-valine yield by minimization of by-products’ production.


l-Valine Corynebacterium glutamicum Brevibacterium flavum alaT avtA 


  1. Almaas E, Kovacs B, Vicsek T, Oltvai ZN, Barabasi AL (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427(6977):839–843. doi:10.1038/nature02289 PubMedCrossRefGoogle Scholar
  2. Ausubel FM, Brent R, Klingston RE, Moore DD, Deidman JD, Smith JA, Struhl K (2005) Recombineering: genetic engineering in bacteria using homologous recombination. In: Thomason L, Court DL, Bubunenko M, Constantino N, Wilson H, Datta S, Oppenheim A (eds) Current protocols in molecular biology. John Wiley & Sons, New York, p 1.16.11–1.16.21Google Scholar
  3. Becker J, Zelder O, Hafner S, Schroder H, Wittmann C (2011) From zero to hero–design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng 13(2):159–168. doi:10.1016/j.ymben.2011.01.003 PubMedCrossRefGoogle Scholar
  4. Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ (2007) l-Valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbiol 73(7):2079–2084. doi:10.1128/AEM.02826-06 PubMedCrossRefGoogle Scholar
  5. Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield l-valine production. Appl Microbiol Biotechnol 79(3):471–479. doi:10.1007/s00253-008-1444-z PubMedCrossRefGoogle Scholar
  6. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645. doi:10.1073/pnas.120163297 PubMedCrossRefGoogle Scholar
  7. Eggeling L (2001) Amino acids. In: Ratledge C, Kristiansen B (eds) Basic biotechnology. Cambridge University Press, London, pp 281–303Google Scholar
  8. Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC, Boca RatonGoogle Scholar
  9. Elisakova V, Patek M, Holatko J, Nesvera J, Leyval D, Goergen JL, Delaunay S (2005) Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl Environ Microbiol 71(1):207–213. doi:10.1128/AEM.71.1.207-213.2005 PubMedCrossRefGoogle Scholar
  10. Hammer K, Mijakovic I, Jensen PR (2006) Synthetic promoter libraries–tuning of gene expression. Trends Biotechnol 24(2):53–55. doi:10.1016/j.tibtech.2005.12.003 PubMedCrossRefGoogle Scholar
  11. Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104(1–3):155–172. doi:10.1016/S0168-1656(03)00149-4 PubMedCrossRefGoogle Scholar
  12. Holatko J, Elisakova V, Prouza M, Sobotka M, Nesvera J, Patek M (2009) Metabolic engineering of the l-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol 139(3):203–210. doi:10.1016/j.jbiotec.2008.12.005 PubMedCrossRefGoogle Scholar
  13. Hou X, Ge X, Wu D, Qian H, Zhang W (2012) Improvement of l-valine production at high temperature in Brevibacterium flavum by overexpressing ilvEBN r C genes. J Ind Microbiol Biotechnol 39(1):63–72. doi:10.1007/s10295-011-1000-1 PubMedCrossRefGoogle Scholar
  14. Ikeda M (2003) Amino acid production processes. Adv Biochem Eng Biotechnol 79:1–35PubMedGoogle Scholar
  15. Lee KH, Park JH, Kim TY, Kim HU, Lee SY (2007) Systems metabolic engineering of Escherichia coli for l-threonine production. Mol Syst Biol 3:149. doi:10.1038/msb4100196 PubMedCrossRefGoogle Scholar
  16. Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69(1):1–8. doi:10.1007/s00253-005-0155-y PubMedCrossRefGoogle Scholar
  17. Lindroth P, Mopper K (1979) High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthalaldehyde. Anal Chem 51:1667–1674CrossRefGoogle Scholar
  18. Marienhagen J, Eggeling L (2008) Metabolic function of Corynebacterium glutamicum aminotransferases AlaT and AvtA and impact on l-valine production. Appl Environ Microbiol 74(24):7457–7462. doi:10.1128/AEM.01025-08 PubMedCrossRefGoogle Scholar
  19. Marienhagen J, Kennerknecht N, Sahm H, Eggeling L (2005) Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum. J Bacteriol 187(22):7639–7646. doi:10.1128/Jb.187.22.7639-7646.2005 PubMedCrossRefGoogle Scholar
  20. Park JH, Lee SY (2010) Fermentative production of branched chain amino acids: a focus on metabolic engineering. Appl Microbiol Biotechnol 85(3):491–506. doi:10.1007/s00253-009-2307-y PubMedCrossRefGoogle Scholar
  21. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104(19):7797–7802. doi:10.1073/pnas.0702609104 PubMedCrossRefGoogle Scholar
  22. Patek M (2007) Branched-chain amino acid. In: VF Wendisch (ed) Amino acid biosynthesis. Springer, Berlin Heidelberg, p 130–162Google Scholar
  23. Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L (2002) Linking central metabolism with increased pathway flux: l-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68(5):2246–2250. doi:10.1128/AEM.68.5.2246-2250.2002 PubMedCrossRefGoogle Scholar
  24. Sahm H, Eggeling L (1999) D-Pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding l-valine synthesis for d-pantothenate overproduction. Appl Environ Microbiol 65(5):1973–1979PubMedGoogle Scholar
  25. Sambrook J, Russel DV (2001) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  26. Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145(1):69–73PubMedCrossRefGoogle Scholar
  27. Solem C, Koebmann B, Yang F, Jensen PR (2007) The las enzymes control pyruvate metabolism in Lactococcus lactis during growth on maltose. J Bacteriol 189(18):6727–6730. doi:10.1128/JB.00902-07 PubMedCrossRefGoogle Scholar
  28. Xu DQ, Tan YZ, Huan XJ, Hu XQ, Wang XY (2010) Construction of a novel shuttle vector for use in Brevibacterium flavum, an industrial amino acid producer. J Microbiol Meth 80(1):86–92. doi:10.1016/j.mimet.2009.11.003 CrossRefGoogle Scholar
  29. Yamada K, Kinoshita S, Tsunoda T, Aida K (1972) The microbial production of amino acids. Halsted Press, New YorkGoogle Scholar
  30. Zimmermann HF, Anderlei T, Buchs J, Binder M (2006) Oxygen limitation is a pitfall during screening for industrial strains. Appl Microbiol Biotechnol 72(6):1157–1160. doi:10.1007/s00253-006-0414-6 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Xiaohu Hou
    • 1
    • 2
    • 3
  • Xinde Chen
    • 1
    • 2
  • Yue Zhang
    • 3
  • He Qian
    • 3
  • Weiguo Zhang
    • 3
  1. 1.Laboratory of Renewable Energy and Gas HydrateChinese Academy of SciencesGuangzhouPeople’s Republic of China
  2. 2.Guangzhou Institute of Energy ConversionChinese Academy of SciencesGuangzhouPeople’s Republic of China
  3. 3.The Key Laboratory of Industrial Biotechnology, Ministry of EducationSchool of Biotechnology, JiangNan UniversityWuxiPeople’s Republic of China

Personalised recommendations