Amino Acids

, Volume 43, Issue 3, pp 1061–1074 | Cite as

Analysing signalling networks by mass spectrometry

Invited Review


Sequence analysis of the human genome and the association of genetic aberrations with diseases have provided a rough framework whereby the impact of individual genotypes can be assessed. To fully understand the effect of individual and co-occurring genetic aberrations, as well as their individual and collected contribution to the development of diseases, it is critical to analyse the matching proteome and to determine how the organisation, expression level and function of protein networks are affected. Sensitive mass spectrometric platforms in combination with innovative workflows allow qualitative and quantitative analyses of the cellular as well as the extracellular proteome. Importantly, in addition to specifically identifying the content of the proteome, several aspects of the proteomic organisation can be analysed including protein complexes, protein modifications, enzymatic activities and subcellular/organelle localisation. Together, these measurements will provide novel insight into the biological effect of disease-causing mutations ultimately coupling genotype and phenotype.


Signal transduction Mass spectrometry Protein kinase signalling 


  1. Akimov V, Rigbolt KTG, Nielsen MM, Blagoev B (2011) Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics. Mol Biosyst 7(12):3223–3233Google Scholar
  2. Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karin-Schmids O, Williams R, Chait B, Sali A, Rout MP (2007a) The molecular architecture of the nuclear pore complex. Nature 450:695–701PubMedCrossRefGoogle Scholar
  3. Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karin-Schmids O, Williams R, Chait B, Rout MP, Sali A (2007b) Determining the architectures of macromolecular assemblies. Nature 450:683–694PubMedCrossRefGoogle Scholar
  4. Albuquerque CP, Smolka MB, Payne SH, Bafna V, Eng J, Zhou H (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7(7):1389–1396PubMedCrossRefGoogle Scholar
  5. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867PubMedCrossRefGoogle Scholar
  6. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71PubMedCrossRefGoogle Scholar
  7. Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S, Mathieson T, Perrin J, Raida M, Rau C, Reader V, Sweetman G, Bauer A, Bouwmeester T, Hopf C, Krise U, Neubauer G, Ramsden N, Rick J, Kuster B, Drewes G (2007) Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 25(9):1035–1044PubMedCrossRefGoogle Scholar
  8. Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donocan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana J (2005) High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307(5715):1621–1625PubMedCrossRefGoogle Scholar
  9. Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li J, Cohn MA, Cantley LC, Gygi SP (2004) Large-scale characterisation of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 101(33):12130–12135PubMedCrossRefGoogle Scholar
  10. Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organisation of the human autophagy system. Nature 466:68–76PubMedCrossRefGoogle Scholar
  11. Beltrao P, Trinidad JC, Fiedler D, Roguev A, Lim WA, Shokat KM, Burlingame AL, Krogan NJ (2009) Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species. PLoS Biol 7(6):e1000134PubMedCrossRefGoogle Scholar
  12. Bennett EJ, Rush J, Gygi SP, Harper JW (2010) Dynamics of Cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 143:951–965PubMedCrossRefGoogle Scholar
  13. Bennetzen MV, Larsen DH, Bunkenborg J, Bartek J, Lukas J, Andersen (2010) JS Site-Specific phosphorylation dynamics of the nuclear proteome during the DNA damage response. Mol Cell Proteomics 9(6):1314–1323Google Scholar
  14. Bishop AC, Ubersax JA, Petsch DT, Matheos DP, Gray NS, Blethrow J, Shimizu E, Tsien JZ, Schulz PG, Rose MD, Wood JL, Morgan DO, Shokat KM (2000) A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407(6802):395–401PubMedCrossRefGoogle Scholar
  15. Bisson N, James DA, Ivosev G, Tate SA, Bonner R, Taylor L, Pawson T (2011) Selected reaction monitoring mass spectrometry reveals the dynamics of signalling through the GRB2 adaptor. Nat Biotechnol 29(7):653–658PubMedCrossRefGoogle Scholar
  16. Blagoev B, Kratchmarova I, Ong SE, Nielsen M, Foster LJ, Mann M (2003) A proteomics strategy to elucidate functional protein–protein interactions applied to EGF signaling. Nat Biotechnol 21(3):315–318PubMedCrossRefGoogle Scholar
  17. Blagoev B, Ong SE, Kratchmarova I, Mann M (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol 22(9):1139–1145PubMedCrossRefGoogle Scholar
  18. Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 4(3):231–237PubMedCrossRefGoogle Scholar
  19. Bodenmiller B, Wanka S, Kraft C, Urban J, Campbell D, Pedrioli PG, Gerrits B, Lam H, Vitek O, Brusniak MY, Roschitski B, Zhang C, Shokat KM, Schlapbach R, Colman-Lerner A, Nolan GP, Nesvizhskii AI, Peter M, Loewith R, von Mering C, Aebersold R (2010) Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Sci Signal 3(153):rs4PubMedCrossRefGoogle Scholar
  20. Bonaldi T, Straub T, Cox J, Kumar C, Becker PB, Mann M (2008) Combined use of RNAi and quantitative proteomics to study gene function in Drosophila. Mol Cell 31:762–772PubMedCrossRefGoogle Scholar
  21. Breikreutz A, Choi H, Sharom J, Boucher L, Neduva V, Larsen B, Lin Z, Breitkreutz B, Stark C, Liu G, Ahn J, Dewar-Darch D, Reguly T, Tang X, Almeida R, Qin ZS, Pawson T, Gingras AC, Nesvizhskii A, Tyers M (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328(5981):1043–1046CrossRefGoogle Scholar
  22. Carlson SM, Chouinard CR, Labadorf A, Lam CJ, Schmelzle K, Fraenkel E, White FM (2011) Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3. Sci Signal 4(196):rs11PubMedCrossRefGoogle Scholar
  23. Chi A, Huttenhower C, Geer LY, Coon JJ, Syka JE, Bai DL, Shabanowitz J, Burke DJ, Troyanskaya OG, Hunt D (2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci USA 104(7):2193–2198PubMedCrossRefGoogle Scholar
  24. Choi H, Lee HS, Park ZY (2008) Detection of multiphosphorylated peptides in LC–MS/MS analysis under low pH conditions. Anal Chem 80(8):3007–3015PubMedCrossRefGoogle Scholar
  25. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walter TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840PubMedCrossRefGoogle Scholar
  26. Cutillas PR, Khwaja A, Graupera M, Pearce W, Gharbi S, Waterfield M, Vanhaesenbroeck B (2006) Ultrasensitive and absolute quantification of the phosphoinositide 3-kinase/Akt signal transduction pathway by mass spectrometry. Proc Natl Acad Sci USA 103(24):8959–8964PubMedCrossRefGoogle Scholar
  27. Danielsen JM, Sylvestersen KB, Bekker-Jensen S, Szklarczyk D, Poulsen JW, Horn H, Jensen LJ, Mailand N, Nielsen ML (2011) Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Mol Cell Proteomics 10(3):M110.003590Google Scholar
  28. Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Korner R, Greff Z, Keri G, Stemmann O, Mann M (2008) Kinase selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31(3):438–448PubMedCrossRefGoogle Scholar
  29. de Godoy LM, Olsen JV, Cox J, Nielsen ML, Hubner NC, Frolich F, Walther TC, Mann M (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455(7217):1251–1254PubMedCrossRefGoogle Scholar
  30. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA 105(31):10762–10767PubMedCrossRefGoogle Scholar
  31. Domanski D, Murphy LC, Borchers CH (2010) Assay development for the determination of phosphorylation stoichiometry using multiple reaction monitoring methods with and without phosphatase treatment: application to breast cancer signalling pathways. Anal Chem 82(13):5610–5620PubMedCrossRefGoogle Scholar
  32. Domon B, Aebersold R (2010) Options and considerations when selecting a quantitative proteomics strategy. Nat Biotechnol 28(7):710–721PubMedCrossRefGoogle Scholar
  33. Dong MQ, Venable JD, Au N, Xu T, Park SK, Cociorva D, Johnson JR, Dillin A, Yates JR (2007) Quantitative mass spectrometry identifies insulin signaling targets in C. elegans. Science 317(5838):660–663PubMedCrossRefGoogle Scholar
  34. Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O’Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D (2007) Large-scale mapping of human protein–protein interactions by mass spectrometry. Mol Syst Biol 3:89PubMedCrossRefGoogle Scholar
  35. Fedorov O, Marsden B, Pogacic V, Rellos P, Muller S, Bullock AN, Schwaller J, Sundstrom M, Knapp S (2007) A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc Natl Acad Sci USA 104(51):20523–20528Google Scholar
  36. Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt D, White FM (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20(3):301–305PubMedCrossRefGoogle Scholar
  37. Friedman AA, Tucker G, Singh R, Yan D, Vinayagam A, Hu Y, Binari R, Hong P, Sun X, Porto M, Pacifico S, Murali T, Finley RL, Asara JM, Berger B, Perrimon N (2011) Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling. Sci Signal 4(196):rs10PubMedCrossRefGoogle Scholar
  38. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B, Edelmann A, Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M, Michon AM, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631–636PubMedCrossRefGoogle Scholar
  39. Geiger T, Cox J, Mann M (2010) Proteomic changes resulting from gene copy number variations in cancer cells. PLoS Genet 6(9). pii: e1001090 Google Scholar
  40. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100(12):6940–6945Google Scholar
  41. Gingras AC, Gstaiger M, Raught B, Aebersold R (2007) Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8(8):645–654PubMedCrossRefGoogle Scholar
  42. Gnad F, Forner F, Zielinska DF, Birney E, Gunawardena J, Mann M (2010) Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria. Mol Cell Proteomics 9(12):2642–2653Google Scholar
  43. Guo A, Villen J, Kornhauser J, Lee KA, Stokes MP, Rikova K, Possemato A, Nardone J, Innocenti G, Wetzel R, Wang Y, MacNeil J, Mitchell J, Gygi SP, Rush J, Polakiewicz RD, Comb ML (2008) Signaling networks assembled by oncogenic EGFR and c-Met. Proc Natl Acad Sci USA 105(2):692–697PubMedCrossRefGoogle Scholar
  44. Guruharsha KG, Rual JF, Zhai B, Mintseris J, Vaidya P, Vaidya N, Beekman C, Wong C, Rhee DY, Cenaj O, McKillip E, Shah S, Stapleton M, Wan KH, Yu C, Parsa B, Carlson JW, Chen X, Kapadia B, Vijayraghavan K, Gygi SP, Celniker SE, Obar RA, Artavanis-Tsakonas S (2011) A protein complex network of Drosophila melanogaster. Cell 147(3):690–703PubMedCrossRefGoogle Scholar
  45. Ho Y, Gruhler A, Helibut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Mathiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran M, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180–183PubMedCrossRefGoogle Scholar
  46. Holt LJ, Tuch B, Villen J, Johnson A, Gygi S, Morgan DO (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insight into evolution. Science 325(5948):1682–1686PubMedCrossRefGoogle Scholar
  47. Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, Petersen TR, Choi Y, Gray NS, Yaffe MB, Marto JA, Sabatini DM (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTRRC1-mediated inhibition of growth factor signaling. Science 332(6035):1317–1322PubMedCrossRefGoogle Scholar
  48. Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavenee WK, Furnari FB, White FM (2007) Quantitative analysis of EGFRvIII cellular signalling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci USA 104(31):12867–12872PubMedCrossRefGoogle Scholar
  49. Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcome virus phosphorylates tyrosine. Proc Natl Acad Sci USA 77(3):1311–1315PubMedCrossRefGoogle Scholar
  50. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villén J, Haas W, Sowa ME, Gygi SP (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143(7):1174–1189PubMedCrossRefGoogle Scholar
  51. Jensen ON (2006) Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7(6):391–403PubMedCrossRefGoogle Scholar
  52. Jin LL, Tong J, Prekash A, Peterman SM, St-Germain JR, Taylot P, Trudel S, Moran MF (2010) Measurement of protein phosphorylation stoichiometry by selected reaction monitoring mass spectrometry. J Proteome Res 9(5):2752–2761PubMedCrossRefGoogle Scholar
  53. Johnson H, Eyers CE, Eyers PA, Beynon RJ, Gaskell SJ (2009) Rigorous determination of the stoichiometry of protein phosphorylation using mass spectrometry. J Am Soc Mass Spectrom 20(12):2211–2220PubMedCrossRefGoogle Scholar
  54. Jorgensen C, Sherman A, Chen GI, Pasculescu A, Poliakov A, Hsiung M, Larsen B, Wilkinson D, Linding R, Pawson T (2009) Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells. Science 326(5959):1502–1509PubMedCrossRefGoogle Scholar
  55. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26(1):127–132PubMedCrossRefGoogle Scholar
  56. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44(2):325–340Google Scholar
  57. Koch A, Krug K, Pengelley S, Macek B, Hauf S (2011) Mitotic substrates of the kinase Aurora with roles in chromatin regulation identified through quantitative phosphoproteomics in fission yeast. Sci Signal 4(179):rs6PubMedCrossRefGoogle Scholar
  58. Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M (2005) Mechanisms of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308(5727):1472–1477PubMedCrossRefGoogle Scholar
  59. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrín-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MHY, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637–643PubMedCrossRefGoogle Scholar
  60. Krüger M, Moser M, Ussar S, Thievessen I, Luber CA, Forner F, Schmidt S, Zanivan S, Fässler R, Mann M (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134(2):353–364PubMedCrossRefGoogle Scholar
  61. Kubota K, Anjum R, Yu Y, Kunz RC, Andersen JN, Kraus M, Keilhack H, Nagashima K, Krauss S, Paweletz C, Hendrickson RC, Feldman AS, Wu CL, Rush J, Villen J, Gygi SP (2009) Sensitive multiplexed analysis of kinase activities and activity-based kinase identification. Nat Biotechnol 27(10):933–940PubMedCrossRefGoogle Scholar
  62. Kuhner S, van Noort V, Betts MJ, Leo-Marcis A, Batisse C, Rode M, Yamada T, Maier T, Bader S, Beltran-Alvarez P, Castano-Diez V, Chen WH, Devon D, Guell M, Norambuena T, Racke I, Rybin V, Schmidt A, Yus E, Aebersold R, Herrmann R, Bottcher B, Frangakis AS, Russell RB, Serrano L, Bork P, Gavin AC (2009) Proteome organisation in a genome-reduced bacterium. Science 326:1235–1240PubMedCrossRefGoogle Scholar
  63. Lange V, Picotti P, Domon B, Aebersold R (2008) Selected reaction monitoring for quantitative proteomics, a tutorial. Mol Syst Biol 4(222):1–14Google Scholar
  64. Levy ED, Landry CR, Michnick SW (2010) Cell signaling. Signaling through cooperation. Science 328(5981):983–984Google Scholar
  65. Linding R, Jensen LJ, Ostheimer GJ, van Vugt MA, Jorgensen C, Miron IM, Diella F, Colwill K, Taylor L, Elder K, Metalnikov P, Nguyen V, Pasculescu A, Jin J, Park JG, Samson LD, Woodgett JR, Russell RB, Bork P, Yaffe MB, Pawson T (2007) Systematic discovery of in vivo phosphorylation networks. Cell 129(7):1415–1426PubMedCrossRefGoogle Scholar
  66. Lopez MF, Rezai T, Sarracino DA, Prakash A, Krastins B, Athanas M, Singh RJ, Barnidge DR, Oran P, Borges C, Nelson RW (2010) Selected reaction monitoring-mass spectrometric immunoassay responsive to parathyroid hormone and related variants. Clin Chem 56(2):281–290PubMedCrossRefGoogle Scholar
  67. Lopez MF, Kuppusamy R, Sarrachino DA, Prakash A, Athanas M, Krastins B, Rezai T, Sutton JN, Peterman S, Nicolaides K (2011) Mass spectrometric discovery and selective reaction monitoring (SRM) of putative protein biomarker candidates in first trimester Trisomy 21 maternal serum. J Proteome Res 10(1):133–142PubMedCrossRefGoogle Scholar
  68. Maier T, Schmids A, Guell M, Kuhner S, Gavin AC, Aebersold R, Serrano L (2011) Quantification of mRNA and protein and integration with protein turnover in a bacterium. Mol Syst Biol 7(511):1–12Google Scholar
  69. Malovannaya A, Lanz RB, Jung SY, Bulynko Y, Le NT, Chan DW, Ding C, Shi Y, Yucer N, Krenciute G, Kim BJ, Li C, Wang Y, O’Malley B, Qin J (2011) Analysis of the human endogenous coregulator complexome. Cell 145(5):787–799PubMedCrossRefGoogle Scholar
  70. Matsuoka S, Balif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828):1160–1166PubMedCrossRefGoogle Scholar
  71. Miller M, Jensen LJ, Diella F, Jorgensen C, Tinti M, Li L, Hsiung M, Parker SA, Bordeaux J, Sicheritz-Ponten T, Olhovsky M, Pasculescu A, Alexander J, Knapp S, Blom N, Bork P, Li S, Cesareni G, Pawson T, Turk BE, Yaffe MB, Brunak S, Linding R (2008) Linear motif atlas for phosphorylation-dependent signaling. Sci Signal 1(35):ra2PubMedCrossRefGoogle Scholar
  72. Mok J, Kim PM, Lam HY, Piccirllo S, Zhou X, Jescheke GR, Sheridan DL, Parker SA, Desai V, Jwa M, Cameroni E, Niu H, Good M, Remenyi A, Ma JL, Shey YJ, Sassi HE, Sopko R, Chan CS, De Virgilio C, Hollingsworth NM, Lim WA, Stern DF, Stillman B, Andrews BJ, Gerstein MB, Snyder M, Turk BE (2010) Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs. Sci Signal 3(109):ra12PubMedCrossRefGoogle Scholar
  73. Moritz A, Li Y, Guo A, Villen J, Wang Y, MacNeill J, Kornhauser J, Sprott K, Zhou J, Possemato A, Ren J, Hornbeck P, Cantley LC, Gygi SP, Rush J, Comb MJ (2010) Akt-RSK-S6 kinase signaling networks activated by oncogenic receptor tyrosine kinases. Sci Signal 3(136):ra64PubMedCrossRefGoogle Scholar
  74. Oda Y, Huang K, Cross FR, Cowburn D, Chait BT (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci USA 96(12):6591–6596PubMedCrossRefGoogle Scholar
  75. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signalling networks. Cell 127(3):635–648PubMedCrossRefGoogle Scholar
  76. Olsen JV, Vermeulen M, Santamaaria A, Mumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3(104):ra3PubMedCrossRefGoogle Scholar
  77. Ong SE, Blagoev B, Kratchmarova I, Kristiansen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labelling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386PubMedCrossRefGoogle Scholar
  78. Oppermann FS, Gnad F, Olsen JV, Hornberger R, Greff Z, Keri G, Mann M, Daub H (2009) Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 8(7):1751–1764PubMedCrossRefGoogle Scholar
  79. Pandey A, Podtelejnikov AV, Blagoev B, Bustelo XR, Mann M, Lodish HF (2000) Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc Natl Acad Sci USA 97(1):179–184PubMedCrossRefGoogle Scholar
  80. Patricelli MP, Szardenings AK, Liyanage M, Nomanbhoy TK, Wu M, Weissig H, Aban A, Chun D, Tanner S, Kozarich JW (2007) Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry 46(2):350–358PubMedCrossRefGoogle Scholar
  81. Patricelli MP, Nomanbhoy TK, Wu J, Brown H, Zhou D, Zhang J, Jagannathan S, Aban A, Okerberg E, Herring C, Nordin B, Weissig H, Yang Q, Lee JD, Gray NS, Kozarich JW (2011) In situ kinase profiling reveals functionally relevant properties of native kinases. Chem Biol 18(6):699–710PubMedCrossRefGoogle Scholar
  82. Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300(5618):445–452PubMedCrossRefGoogle Scholar
  83. Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21(8):921–926PubMedCrossRefGoogle Scholar
  84. Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138(4):795–806PubMedCrossRefGoogle Scholar
  85. Picotti P, Rinner O, Stallmach R, Dautel F, Farrah T, Domon B, Wenschuh H, Aebersold R (2010) High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat Methods 7(1):43–46PubMedCrossRefGoogle Scholar
  86. Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ (2004) Selective isolation of femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC-ESI-MS/MS and titanium dioxide precolumns. Anal Chem 76(14):3935–3943PubMedCrossRefGoogle Scholar
  87. Prakash A, Rezai T, Krastins B, Sarracino D, Athanas M, Russo P, Ross MM, Zhang H, Tian Y, Kulasingam V, Drabovich AP, Smith C, Batruch I, Liotta L, Petricoin E, Diamandis EP, Chan DW, Lopez MF (2010) Platform for establishing interlaboratory reproducibility of selected reaction monitoring-based mass spectrometry peptide assays. J Proteome Res 9(12):6678–6688PubMedCrossRefGoogle Scholar
  88. Pratt JM, Simpson DM, Doherty MK, Rivers J, Gaskall SJ, Beynon RJ (2006) Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat Protocols 1(2):1029–1043CrossRefGoogle Scholar
  89. Prokhorova TA, Rigbolt KT, Johansen PT, Henningsen J, Kratchmarova I, Kassem M, Blagoev B (2009) Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells. Mol Cell Proteomics 8(5):959–970PubMedCrossRefGoogle Scholar
  90. Rechavi O, Kalman M, Fang Y, Vernitsky H, Jacob-Hirsch J, Foster LJ, Kloog Y, Goldstein I (2010) Trans-SILAC: sorting out the non-cell autonomous proteome. Nat Methods 7(11):923–927PubMedCrossRefGoogle Scholar
  91. Rifai N, Gillette M, Carr SA (2006) Protein Biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24(8):971–983PubMedCrossRefGoogle Scholar
  92. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y, Hu Y, Tan Z, Stokes M, Sullivan L, Mitchell J, Wetzel R, Macneil J, Ren JM, Yuan J, Bakalarski CE, Villen J, Kornhauser JM, Smith B, Li D, Zhou X, Gygi SP, Gu TL, Polakiewicz RD, Rush J, Comb MJ (2007) Global survey of phosphotyrosine signaling identified oncogenic kinases in lung cancer. Cell 131(6):1190–1203PubMedCrossRefGoogle Scholar
  93. Rubbi L, Titz B, Brown L, Galvan E, Komisopoulou E, Chen SS, Low T, Tahmasian M, Skaggs B, Müschen M, Pellegrini M, Graeber TG (2011) Global phosphoproteomics reveals crosstalk between Bcr-Abl and negative feedback mechanisms controlling Src signaling. Sci Signal 4(166):ra18PubMedCrossRefGoogle Scholar
  94. Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23(1):94–101PubMedCrossRefGoogle Scholar
  95. Schmidt A, Gehlenborg N, Bodenmiller B, Mueller LN, Campbell D, Mueller M, Aebersold R, Domon B (2008) An integrated, directed mass spectrometric approach for in-depth characterization of complex peptide mixtures. Mol Cell Proteomics 7(11):2138–2150PubMedCrossRefGoogle Scholar
  96. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342PubMedCrossRefGoogle Scholar
  97. Scott JD, Pawson T (2009) Cell signaling in space and time: where proteins come together and when they’re apart. Science 326(5957):1220–1224PubMedCrossRefGoogle Scholar
  98. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63PubMedCrossRefGoogle Scholar
  99. Sowa ME, Bennett EJ, Gygi SP, Harper JW (2009) Defining the human deubiquitinating enzyme interaction landscape. Cell 138(2):389–403PubMedCrossRefGoogle Scholar
  100. Steen H, Mann M (2004) The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol 5(9):699–711Google Scholar
  101. Steen H, Jebanathirajah JA, Springer M, Kirschner MW (2005) Stable isotope-free relative quantification of protein phosphorylation stoichiometry by MS. Proc Natl Acad Sci 102(11):3948–3953PubMedCrossRefGoogle Scholar
  102. Steen JA, Steen H, Georgi A, Parker K, Springer M, Kirchner M, Hamprecht F, Kirschner MW (2008) Different phosphorylation states of the anaphase promoting complex in response to antimitotic drugs: a quantitative proteomics analysis. Proc Natl Acad Sci USA 105(16):6069–6074PubMedCrossRefGoogle Scholar
  103. Stokes MP, Rush J, Macneill J, Ren JM, Sprott K, Nardone J, Yang V, Beausoleil SA, Gygi SP, Livingstone M, Zhang H, Polakiewics RD, Comb MJ (2007) Profiling of UV-induced ATM/ATR signalling pathways. Proc Natl Acad Sci USA 104(50):19855–19860PubMedCrossRefGoogle Scholar
  104. Sury MD, Chen JX, Selbach M (2010) The SILAC fly allows for accurate protein quantification in vivo. Mol Cell Proteomics 9(10):2173–2183PubMedCrossRefGoogle Scholar
  105. Tan CS, Bodenmiller B, Pasculescu A, Jovanovic M, Hengartner MO, Jorgensen C, Bader GD, Aebersold R, Pawson T, Linding R (2009) Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases. Sci Signal 2(81):ra39PubMedCrossRefGoogle Scholar
  106. Tao WA, Wollscheid B, O’Brien R, Eng JK, Li XJ, Bodenmiller B, Watt JD, Hood L, Aebersold R (2005) Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry. Nat Methods 2(8):591–598PubMedCrossRefGoogle Scholar
  107. Tarassov K, Messier V, Landry CR, Radinovic S, Serna Molina MM, Shames I, Malitskaya Y, Vogel J, Bussey H, Michnick SW (2008) An in vivo map of the yeast protein interactome. Science 320(5882):1465–1470PubMedCrossRefGoogle Scholar
  108. Thingholm TE, Jensen ON, Robinson PJ, Larsen MR (2008) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 7(4):661–671PubMedGoogle Scholar
  109. Van Hoof D, Muñoz J, Braam SR, Pinkse MW, Linding R, Heck AJ, Mummery CL, Krijgsveld J (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5(2):214–226PubMedCrossRefGoogle Scholar
  110. Villén J, Gygi SP (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protocols 3(10):1630–1638CrossRefGoogle Scholar
  111. Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10(10):M111.013284Google Scholar
  112. Walhout AJM, Sordella R, Lu X, Hartley JL, Temple GF, Brasch MA, Thierry-Mieg N, Vidal M (2000) Protein interaction mapping in C. Elegans using proteins involved in vulval development. Science 287(5450):116–122PubMedCrossRefGoogle Scholar
  113. Wang Q, Chaerkady R, Wu J, Hwang HJ, Papadopoulos N, Kopelovich L, Maitra A, Matthaei H, Eshleman JR, Hruban RH, Kinzler KW, Pandey A, Vogelstein B (2011) Mutant proteins as cancer-specific biomarkers. Proc Natl Acad Sci USA 108(6):2444–2449PubMedCrossRefGoogle Scholar
  114. Wepf A, Glatter T, Schmids A, Aebersold R, Gstaiger M (2009) Quantitative interaction proteomics using mass spectrometry. Nat Methods 6(3):203–205PubMedCrossRefGoogle Scholar
  115. Witze W, Old M, Resing KA, Ahn NG (2007) Mapping protein post-translational modifications with mass spectrometry. Nat Methods 4(10):798–806PubMedCrossRefGoogle Scholar
  116. Wolf-Yadlin A, Hautaneimi S, Lauffenburger DA, White FM (2007) Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signalling networks. Proc Natl Acad Sci USA 104(14):5860–5865PubMedCrossRefGoogle Scholar
  117. Wu R, Dephoure N, Haas W, Huttlin EL, Zhai B, Sowa ME, Gygi SP (2011a) Correct interpretation of comprehensive phosphorylation dynamics requires normalisation by protein expression changes. Mol Cell Proteomics 10(8):M111.009654Google Scholar
  118. Wu R, Haas W, Dephoure N, Huttlin E, Zhai B, Sowa ME, Gygi S (2011b) A large-scale method to measure absolute protein phosphorylation stoichiometries. Nat Methods 8(8):677–683PubMedCrossRefGoogle Scholar
  119. Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137(1):133–145PubMedCrossRefGoogle Scholar
  120. Xu G, Paige JS, Jaffrey SR (2010) Global analysis of lysine ubiquitination by remnant immunoaffinity profiling. Nat Biotechnol 28(8):868–873PubMedCrossRefGoogle Scholar
  121. Yaffe MB (2002) Phosphotyrosine-binding domains in signal transduction. Nat Rev Mol Cell Biol 3(3):177–186PubMedCrossRefGoogle Scholar
  122. Yu Y, Anjum R, Kubota K, Rush J, Villen J, Gygi SP (2009) A site-specific, multiplexed kinase activity assay using stable-isotope dilution and high-resolution mass spectrometry. Proc Natl Acad Sci USA 106(28):11606–11611PubMedCrossRefGoogle Scholar
  123. Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J, Kubica N, Hoffman GR, Cantley LC, Gygi SP, Blenis J (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signalling. Science 332(6035):1322–1326PubMedCrossRefGoogle Scholar
  124. Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA, White FM (2005) Time-resolved mass spectrometry of tyrosine phosphorylation sites in epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 4(9):1240–1250PubMedCrossRefGoogle Scholar
  125. Zhang X, Ye J, Jensen ON, Roepstorff P (2007) Highly efficient phosphopeptide enrichment by calcium phosphate precipitation combined with subsequent IMAC enrichment. Mol Cell Proteomics 6(11):2032–2042PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Division of Cancer Biology, Cell Communication TeamThe Institute of Cancer ResearchLondonUK

Personalised recommendations