Amino Acids

, Volume 43, Issue 4, pp 1803–1807 | Cite as

Creatine-induced glucose uptake in type 2 diabetes: a role for AMPK-α?

  • Christiano Robles Rodrigues Alves
  • Júlio César Ferreira
  • Mário Alves de Siqueira-Filho
  • Carla Roberta Carvalho
  • Antonio Herbert LanchaJr.
  • Bruno GualanoEmail author
Short Communication


This study focused on understanding the signaling mechanisms leading to GLUT-4 translocation and increased skeletal-muscle glucose uptake that follow creatine (Cr) supplementation in type 2 diabetes (n = 10). AMPK-α protein content presented a tendency to be higher (p = 0.06) after Cr supplementation (5 g/d for 12w). The changes in AMPK-α protein content significantly related (p < 0.001) to the changes in GLUT-4 translocation (r = 0.78) and Hb1Ac levels (r = −0.68), suggesting that AMPK signaling may be implicated in the effects of supplementation on glucose uptake in type 2 diabetes.


Creatine supplementation Insulin resistance Molecular pathways 



The authors are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). The authors also thank Probiotica® for providing the dietary supplements.

Conflict of interest

The authors declare no conflict of interests.


  1. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PRJ, Reese CB, Cohen P et al (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B. Curr Biol 7:261–269PubMedCrossRefGoogle Scholar
  2. Brannon TA, Adams GR, Conniff CL, Baldwin KM (1997) Effects of creatine loading and training on running performance and biochemical properties of rat skeletal muscle. Med Sci Sports Exerc 29(4):489–495PubMedCrossRefGoogle Scholar
  3. Ceddia RB, Sweeney G (2004) Creatine supplementation increases glucose oxidation and AMPK phosphorylation and reduces lactate production in L6 rat skeletal muscle cells. J Physiol 555(Pt 2):409–421PubMedGoogle Scholar
  4. Cong LN, Chen H, Li Y, Zhou L, McGibbon MA, Taylor SI, Quon MJ (1997) Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. Mol Endocrinol 11(13):1881–1890PubMedCrossRefGoogle Scholar
  5. Eijnde BO, Derave W, Wojtaszewski JF, Richter EA, Hespel P (2005) AMP kinase expression and activity in human skeletal muscle: effects of immobilization, retraining, and creatine supplementation. J Appl Physiol 98(4):1228–1233PubMedCrossRefGoogle Scholar
  6. Green AL, Hultman E, Macdonald IA, Sewell DA, Greenhaff PL (1996) Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Physiol 271(5 Pt 1):E821–E826PubMedGoogle Scholar
  7. Greenhaff PL, Bodin K, Soderlund K, Hultman E (1994) Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am J Physiol 266(5 Pt 1):E725–E730PubMedGoogle Scholar
  8. Gualano B, DESP V, Roschel H, Artioli GG, Neves M Jr, De Sa Pinto AL, Da Silva ME, Cunha MR, Otaduy MC, Leite Cda C, Ferreira JC, Pereira RM, Brum PC, Bonfa E, Lancha AH Jr et al (2011) Creatine in type 2 diabetes: a randomized, double-blind, placebo controlled trial. Med Sci Sports Exerc 43(5):770–778PubMedCrossRefGoogle Scholar
  9. Hardie DG, Salt IP, Hawley SA, Davies SP (1999) AMP-activated protein kinase: an ultrasensitive system for monitoring cellular energy charge. Biochem J 338(Pt 3):717–722PubMedCrossRefGoogle Scholar
  10. Henriksen EJ (2002) Effects of acute exercise and exercise training on insulin resistance. J Appl Physiol 93(2):788–796PubMedGoogle Scholar
  11. Hill MM, Clark SF, Tucker DF, Birnbaum MJ, James DE, Macaulay SL (1999) A role for protein kinase Bbeta/Akt2 in insulin-stimulated GLUT4 translocation in adipocytes. Mol Cell Biol 19(11):7771–7781PubMedGoogle Scholar
  12. Klivenyi P, Ferrante RJ, Matthews RT, Bogdanov MB, Klein AM, Andreassen OA, Mueller G, Wermer M, Kaddurah-Daouk R, Beal MF (1999) Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med 5(3):347–350PubMedCrossRefGoogle Scholar
  13. Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, Mihaylova MM, Nelson MC, Zou Y, Juguilon H, Kang H, Shaw RJ, Evans RM (2008) AMPK and PPARdelta agonists are exercise mimetics. Cell 134(3):405–415PubMedCrossRefGoogle Scholar
  14. Neves M Jr, Gualano B, Roschel H, Fuller R, Benatti FB, DESP AL, Lima FR, Pereira RM, Lancha AH Jr, Bonfa E et al (2011) Beneficial effect of creatine supplementation in knee osteoarthritis. Med Sci Sports Exerc 43(8):1538–1543PubMedCrossRefGoogle Scholar
  15. Op ‘t Eijnde B, Richter EA, Henquin JC, Kiens B, Hespel P et al (2001a) Effect of creatine supplementation on creatine and glycogen content in rat skeletal muscle. Acta Physiol Scand 171(2):169–176CrossRefGoogle Scholar
  16. Op ‘t Eijnde B, Urso B, Richter EA, Greenhaff PL, Hespel P et al (2001b) Effect of oral creatine supplementation on human muscle GLUT4 protein content after immobilization. Diabetes 50(1):18–23PubMedCrossRefGoogle Scholar
  17. Pereira LO, Lancha AH Jr (2004) Effect of insulin and contraction up on glucose transport in skeletal muscle. Prog Biophys Mol Biol 84(1):1–27PubMedCrossRefGoogle Scholar
  18. Ponticos M, Lu QL, Morgan JE, Hardie DG, Partridge TA, Carling D (1998) Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J 17(6):1688–1699PubMedCrossRefGoogle Scholar
  19. Romero-Calvo I, Ocon B, Martinez-Moya P, Suarez MD, Zarzuelo A, Martinez-Augustin O, de Medina FS (2010) Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal Biochem 401(2):318–320PubMedCrossRefGoogle Scholar
  20. Roschel H, Ugrinowistch C, Barroso R, Batista MA, Souza EO, Aoki MS, Siqueira-Filho MA, Zanuto R, Carvalho CR, Neves M, Mello MT, Tricoli V (2011) Effect of eccentric exercise velocity on akt/mtor/p70(s6 k) signaling in human skeletal muscle. Appl Physiol Nutr Metab 36(2):283–290PubMedCrossRefGoogle Scholar
  21. Sabio G, Reuver S, Feijoo C, Hasegawa M, Thomas GM, Centeno F, Kuhlendahl S, Leal-Ortiz S, Goedert M, Garner C, Cuenda A (2004) Stress- and mitogen-induced phosphorylation of the synapse-associated protein SAP90/PSD-95 by activation of SAPK3/p38gamma and ERK1/ERK2. Biochem J 380(Pt 1):19–30PubMedCrossRefGoogle Scholar
  22. Safdar A, Yardley NJ, Snow R, Melov S, Tarnopolsky MA (2008) Global and targeted gene expression and protein content in skeletal muscle of young men following short-term creatine monohydrate supplementation. Physiol Genomics 32(2):219–228PubMedGoogle Scholar
  23. Sakamoto K, Holman GD (2008) Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am J Physiol Endocrinol Metab 295(1):E29–E37PubMedCrossRefGoogle Scholar
  24. Tarnopolsky M, Martin J (1999) Creatine monohydrate increases strength in patients with neuromuscular disease. Neurology 52(4):854–857PubMedCrossRefGoogle Scholar
  25. Winder WW (2001) Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. J Appl Physiol 91(3):1017–1028PubMedGoogle Scholar
  26. Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D, Jing C, Walker PA, Eccleston JF, Haire LF, Saiu P, Howell SA, Assland R, Martin SR, Carling D, Gamblin S (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472(7342):230–233PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Christiano Robles Rodrigues Alves
    • 1
  • Júlio César Ferreira
    • 1
  • Mário Alves de Siqueira-Filho
    • 2
  • Carla Roberta Carvalho
    • 2
  • Antonio Herbert LanchaJr.
    • 1
  • Bruno Gualano
    • 1
    Email author
  1. 1.School of Physical Education and SportsUniversity of Sao PauloSao PauloBrazil
  2. 2.Biosciences Institute, University of Sao PauloSao PauloBrazil

Personalised recommendations