Amino Acids

, Volume 43, Issue 4, pp 1471–1483 | Cite as

The α-defensin salt-bridge induces backbone stability to facilitate folding and confer proteolytic resistance

  • Håkan S. Andersson
  • Sharel M. Figueredo
  • Linda M. Haugaard-Kedström
  • Elina Bengtsson
  • Norelle L. Daly
  • Xiaoqing Qu
  • David J. Craik
  • André J. OuelletteEmail author
  • K. Johan RosengrenEmail author
Original Article


Salt-bridge interactions between acidic and basic amino acids contribute to the structural stability of proteins and to protein–protein interactions. A conserved salt-bridge is a canonical feature of the α-defensin antimicrobial peptide family, but the role of this common structural element has not been fully elucidated. We have investigated mouse Paneth cell α-defensin cryptdin-4 (Crp4) and peptide variants with mutations at Arg7 or Glu15 residue positions to disrupt the salt-bridge and assess the consequences on Crp4 structure, function, and stability. NMR analyses showed that both (R7G)-Crp4 and (E15G)-Crp4 adopt native-like structures, evidence of fold plasticity that allows peptides to reshuffle side chains and stabilize the structure in the absence of the salt-bridge. In contrast, introduction of a large hydrophobic side chain at position 15, as in (E15L)-Crp4 cannot be accommodated in the context of the Crp4 primary structure. Regardless of which side of the salt-bridge was mutated, salt-bridge variants retained bactericidal peptide activity with differential microbicidal effects against certain bacterial cell targets, confirming that the salt-bridge does not determine bactericidal activity per se. The increased structural flexibility induced by salt-bridge disruption enhanced peptide sensitivity to proteolysis. Although sensitivity to proteolysis by MMP7 was unaffected by most Arg7 and Glu15 substitutions, every salt-bridge variant was degraded extensively by trypsin. Moreover, the salt-bridge facilitates adoption of the characteristic α-defensin fold as shown by the impaired in vitro refolding of (E15D)-proCrp4, the most conservative salt-bridge disrupting replacement. In Crp4, therefore, the canonical α-defensin salt-bridge facilitates adoption of the characteristic α-defensin fold, which decreases structural flexibility and confers resistance to degradation by proteinases.


Defensin Cryptdin-4 Crp4 Salt-bridge Structure Folding Proteolytic stability 



This work was supported in part by the Linnaeus University (KJR and HSA), Australian Research Council and National Medical and Health Research Council (NHMRC) (DJC), and NIH Grants DK044632 and AI059346 (AJO). KJR is an NHMRC Biomedical CDA Fellow. NLD is a Queensland Smart State Fellow. DJC is an NHMRC Professorial Research Fellow. The authors gratefully acknowledge the use of the Queensland NMR Network 900 MHz spectrometer.

Supplementary material

726_2012_1220_MOESM1_ESM.pdf (74 kb)
Supplementary material 1 (PDF 74 kb)


  1. Andersen NH, Neidigh JW, Harris SM, Lee GM, Liu ZH, Tong H (1997) Extracting information from the temperature gradients of polypeptide NH chemical shifts.1. The importance of conformational averaging. J Am Chem Soc 119(36):8547–8561CrossRefGoogle Scholar
  2. Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ (2000) Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 1(2):113–118PubMedCrossRefGoogle Scholar
  3. Ayabe T, Satchell DP, Pesendorfer P, Tanabe H, Wilson CL, Hagen SJ, Ouellette AJ (2002) Activation of Paneth cell alpha-defensins in mouse small intestine. J Biol Chem 277(7):5219–5228PubMedCrossRefGoogle Scholar
  4. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54(Pt 5):905–921PubMedCrossRefGoogle Scholar
  5. Cierpicki T, Otlewski J (2001) Amide proton temperature coefficients as hydrogen bond indicators in proteins. J Biomol NMR 21(3):249–261PubMedCrossRefGoogle Scholar
  6. Clark RJ, Fischer H, Dempster L, Daly NL, Rosengren KJ, Nevin ST, Meunier FA, Adams DJ, Craik DJ (2005) Engineering stable peptide toxins by means of backbone cyclization: stabilization of the alpha-conotoxin MII. Proc Natl Acad Sci USA 102(39):13767–13772PubMedCrossRefGoogle Scholar
  7. Clark RJ, Jensen J, Nevin ST, Callaghan BP, Adams DJ, Craik DJ (2010) The engineering of an orally active conotoxin for the treatment of neuropathic pain. Angew Chem Int Ed Engl 49(37):6545–6548PubMedCrossRefGoogle Scholar
  8. Craik DJ (2006) Seamless proteins tie up their loose ends. Science 311(5767):1563–1564PubMedCrossRefGoogle Scholar
  9. Figueredo SM, Weeks CS, Young SK, Ouellette AJ (2009) Anionic amino acids near the pro-alpha-defensin N terminus mediate inhibition of bactericidal activity in mouse pro-cryptdin-4. J Biol Chem 284(11):6826–6831PubMedCrossRefGoogle Scholar
  10. Figueredo S, Mastroianni JR, Tai KP, Ouellette AJ (2010) Expression and purification of recombinant alpha-defensins and alpha-defensin precursors in Escherichia coli. Methods Mol Biol 618:47–60PubMedGoogle Scholar
  11. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3(9):710–720PubMedCrossRefGoogle Scholar
  12. Ghosh D, Porter E, Shen B, Lee SK, Wilk D, Drazba J, Yadav SP, Crabb JW, Ganz T, Bevins CL (2002) Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 3(6):583–590PubMedCrossRefGoogle Scholar
  13. Guntert P, Mumenthaler C, Wuthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273(1):283–298PubMedCrossRefGoogle Scholar
  14. Hadjicharalambous C, Sheynis T, Jelinek R, Shanahan MT, Ouellette AJ, Gizeli E (2008) Mechanisms of alpha-defensin bactericidal action: comparative membrane disruption by cryptdin-4 and its disulfide-null analogue. Biochemistry 47(47):12626–12634PubMedCrossRefGoogle Scholar
  15. Kamdar K, Maemoto A, Qu X, Young SK, Ouellette AJ (2008) In vitro activation of the rhesus macaque myeloid alpha-defensin precursor proRMAD-4 by neutrophil serine proteinases. J Biol Chem 283(47):32361–32368PubMedCrossRefGoogle Scholar
  16. Kaser A, Blumberg RS (2010) Endoplasmic reticulum stress and intestinal inflammation. Mucosal Immunol 3(1):11–16PubMedCrossRefGoogle Scholar
  17. Kaser A, Tomczak M, Blumberg RS (2011) “ER stress(ed out)!”: Paneth cells and ischemia-reperfusion injury of the small intestine. Gastroenterology 140(2):393–396PubMedCrossRefGoogle Scholar
  18. Keller RLJ (2004) Computer aided resonance assignment tutorial. Cantina Verlag, ZurichGoogle Scholar
  19. Lehrer RI, Ganz T, Szklarek D, Selsted ME (1988) Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. J Clin Invest 81(6):1829–1835PubMedCrossRefGoogle Scholar
  20. Llenado RA, Weeks CS, Cocco MJ, Ouellette AJ (2009) Electropositive charge in alpha-defensin bactericidal activity: functional effects of Lys-for-Arg substitutions vary with the peptide primary structure. Infect Immun 77(11):5035–5043PubMedCrossRefGoogle Scholar
  21. Maemoto A, Qu X, Rosengren KJ, Tanabe H, Henschen-Edman A, Craik DJ, Ouellette AJ (2004) Functional analysis of the alpha-defensin disulfide array in mouse cryptdin-4. J Biol Chem 279(42):44188–44196PubMedCrossRefGoogle Scholar
  22. McGuckin MA, Eri RD, Das I, Lourie R, Florin TH (2010) ER stress and the unfolded protein response in intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 298(6):G820–G832PubMedCrossRefGoogle Scholar
  23. Missimer JH, Steinmetz MO, Baron R, Winkler FK, Kammerer RA, Daura X, van Gunsteren WF (2007) Configurational entropy elucidates the role of salt-bridge networks in protein thermostability. Protein Sci 16(7):1349–1359PubMedCrossRefGoogle Scholar
  24. Nederveen AJ, Doreleijers JF, Vranken W, Miller Z, Spronk CA, Nabuurs SB, Guntert P, Livny M, Markley JL, Nilges M, Ulrich EL, Kaptein R, Bonvin AM (2005) RECOORD: a recalculated coordinate database of 500 + proteins from the PDB using restraints from the BioMagResBank. Proteins 59(4):662–672PubMedCrossRefGoogle Scholar
  25. Pazgier M, Hoover DM, Yang D, Lu W, Lubkowski J (2006) Human beta-defensins. Cell Mol Life Sci 63(11):1294–1313PubMedCrossRefGoogle Scholar
  26. Rajabi M, de Leeuw E, Pazgier M, Li J, Lubkowski J, Lu W (2008) The conserved salt bridge in human alpha-defensin 5 is required for its precursor processing and proteolytic stability. J Biol Chem 283(31):21509–21518PubMedCrossRefGoogle Scholar
  27. Rosengren KJ, McManus AM, Craik DJ (2002) The structural and functional diversity of naturally occurring antimicrobial Peptides. Curr Med Chem Anti-infect Agents 1:319–341CrossRefGoogle Scholar
  28. Rosengren KJ, Daly NL, Plan MR, Waine C, Craik DJ (2003) Twists, knots, and rings in proteins. Structural definition of the cyclotide framework. J Biol Chem 278(10):8606–8616PubMedCrossRefGoogle Scholar
  29. Rosengren KJ, Daly NL, Fornander LM, Jonsson LM, Shirafuji Y, Qu X, Vogel HJ, Ouellette AJ, Craik DJ (2006) Structural and functional characterization of the conserved salt bridge in mammalian Paneth cell alpha-defensins: solution structures of mouse cryptdin-4 and (E15D)-cryptdin-4. J Biol Chem 281(38):28068–28078PubMedCrossRefGoogle Scholar
  30. Satchell DP, Sheynis T, Kolusheva S, Cummings J, Vanderlick TK, Jelinek R, Selsted ME, Ouellette AJ (2003) Quantitative interactions between cryptdin-4 amino terminal variants and membranes. Peptides 24(11):1795–1805PubMedCrossRefGoogle Scholar
  31. Satoh Y (1988) Effect of live and heat-killed bacteria on the secretory activity of Paneth cells in germ-free mice. Cell Tissue Res 251(1):87–93PubMedCrossRefGoogle Scholar
  32. Satoh Y, Ishikawa K, Ono K, Vollrath L (1986) Quantitative light microscopic observations on Paneth cells of germ-free and ex-germ-free Wistar rats. Digestion 34(2):115–121PubMedCrossRefGoogle Scholar
  33. Selsted ME, Harwig SS (1989) Determination of the disulfide array in the human defensin HNP-2. A covalently cyclized peptide. J Biol Chem 264(7):4003–4007PubMedGoogle Scholar
  34. Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6(6):551–557PubMedCrossRefGoogle Scholar
  35. Selsted ME, Tang YQ, Morris WL, McGuire PA, Novotny MJ, Smith W, Henschen AH, Cullor JS (1993) Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem 268(9):6641–6648PubMedGoogle Scholar
  36. Shirafuji Y, Tanabe H, Satchell DP, Henschen-Edman A, Wilson CL, Ouellette AJ (2003) Structural determinants of pro-cryptdin recognition and cleavage by matrix metalloproteinase-7. J Biol Chem 278(10):7910–7919PubMedCrossRefGoogle Scholar
  37. Tanabe H, Qu X, Weeks CS, Cummings JE, Kolusheva S, Walsh KB, Jelinek R, Vanderlick TK, Selsted ME, Ouellette AJ (2004) Structure-activity determinants in Paneth cell alpha-defensins: loss-of-function in mouse cryptdin-4 by charge-reversal at arginine residue positions. J Biol Chem 279(12):11976–11983PubMedCrossRefGoogle Scholar
  38. Tang YQ, Yuan J, Osapay G, Osapay K, Tran D, Miller CJ, Ouellette AJ, Selsted ME (1999) A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 286(5439):498–502PubMedCrossRefGoogle Scholar
  39. Wagner G (1990) Nmr Investigations of protein-structure. Prog Nucl Mag Res Spect 22:101–139CrossRefGoogle Scholar
  40. Weeks CS, Tanabe H, Cummings JE, Crampton SP, Sheynis T, Jelinek R, Vanderlick TK, Cocco MJ, Ouellette AJ (2006) Matrix metalloproteinase-7 activation of mouse Paneth cell pro-alpha-defensins: Ser43↓Ile44 proteolysis enables membrane-disruptive activity. J Biol Chem 281(39):28932–28942PubMedCrossRefGoogle Scholar
  41. White SH, Wimley WC, Selsted ME (1995) Structure, function, and membrane integration of defensins. Curr Opin Struct Biol 5(4):521–527PubMedCrossRefGoogle Scholar
  42. Williams DV, Byrne A, Stewart J, Andersen NH (2011) Optimal salt bridge for Trp-cage stabilization. Biochemistry 50(7):1143–1152PubMedCrossRefGoogle Scholar
  43. Wilmes M, Cammue BP, Sahl HG, Thevissen K (2011) Antibiotic activities of host defense peptides: more to it than lipid bilayer perturbation. Nat Prod Rep 28(8):1350–1358PubMedCrossRefGoogle Scholar
  44. Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS, Stratman JL, Hultgren SJ, Matrisian LM, Parks WC (1999) Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286(5437):113–117PubMedCrossRefGoogle Scholar
  45. Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5(1):67–81PubMedCrossRefGoogle Scholar
  46. Wu Z, Li X, de Leeuw E, Ericksen B, Lu W (2005) Why is the Arg5-Glu13 salt bridge conserved in mammalian alpha-defensins? J Biol Chem 280(52):43039–43047PubMedCrossRefGoogle Scholar
  47. Xie C, Prahl A, Ericksen B, Wu Z, Zeng P, Li X, Lu WY, Lubkowski J, Lu W (2005) Reconstruction of the conserved beta-bulge in mammalian defensins using D-amino acids. J Biol Chem 280(38):32921–32929PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Håkan S. Andersson
    • 3
  • Sharel M. Figueredo
    • 4
    • 5
  • Linda M. Haugaard-Kedström
    • 3
  • Elina Bengtsson
    • 3
  • Norelle L. Daly
    • 2
  • Xiaoqing Qu
    • 4
  • David J. Craik
    • 2
  • André J. Ouellette
    • 4
    Email author
  • K. Johan Rosengren
    • 1
    • 3
    Email author
  1. 1.School of Biomedical SciencesThe University of QueenslandBrisbaneAustralia
  2. 2.Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
  3. 3.School of Natural SciencesLinnaeus UniversityKalmarSweden
  4. 4.Department of Pathology and Laboratory MedicineKeck School of Medicine of USC, USC/Norris Cancer CenterLos AngelesUSA
  5. 5.LifeTechnologies Inc.CarlsbadUSA

Personalised recommendations