Amino Acids

, Volume 43, Issue 4, pp 1431–1443 | Cite as

Site-selective radiolabeling of peptides by 18F-fluorobenzoylation with [18F]SFB in solution and on solid phase: a comparative study

  • Manuela Kuchar
  • Marc Pretze
  • Torsten Kniess
  • Jörg Steinbach
  • Jens Pietzsch
  • Reik LöserEmail author
Original Article


Peptides labeled with short-lived positron-emitting radionuclides are of outstanding interest as probes for molecular imaging by positron emission tomography (PET). Herein, the site-selective incorporation of fluorine-18 into lysine-containing peptides using the prosthetic labeling agent N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) is described. The reaction of [18F]SFB with four biologically relevant resin-bound peptides was studied and optimized. For comparison, each peptide was 18F-fluorobenzoylated in solution under different conditions and the product distribution was analyzed confirming the advantages of the solid-phase approach. The method’s feasibility for selective radiolabeling either at the N-terminus or at the lysine side chain was demonstrated. Labeling on solid phase with [18F]SFB resulted in crude 18F-fluorobenzoylpeptides whose radiochemical purities were typically greater than 90% and that could be prepared in synthesis times from 65 to 76 min.


Fluorine-18 Solid-phase synthesis Regioselectivity Positron emission tomography 



The dedicated assistance of Uta Lenkeit and Peggy Wecke in the radiosynthesis of [18F]SFB is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

726_2012_1216_MOESM1_ESM.pdf (485 kb)
Supplementary material 1 (PDF 485 kb)


  1. Barry GD, Le GT, Fairlie DP (2006) Agonists and antagonists of protease activated receptors (PARs). Curr Med Chem 13:243–265PubMedCrossRefGoogle Scholar
  2. Becaud J, Mu L, Karramkam M, Schubiger PA, Ametamey SM, Graham K, Stellfeld T, Lehmann L, Borkowski S, Berndorff D, Dinkelborg L, Srinivasan A, Smits R, Koksch B (2009) Direct one-step 18F-labeling of peptides via nucleophilic aromatic substitution. Bioconjugate Chem 20:2254–2261CrossRefGoogle Scholar
  3. Bejot R, Elizarov AM, Ball E, Zhang J, Miraghaie R, Kolb HC, Gouverneur V (2011) Batch-mode microfluidic radiosynthesis of N-succinimidyl-4-[18F]fluorobenzoate for protein labelling. J Label Compd Radiopharm 54:117–122CrossRefGoogle Scholar
  4. Cai LS, Lu SY, Pike VW (2008) Chemistry with [F-18]fluoride ion. Eur J Org Chem 17:2853–2873CrossRefGoogle Scholar
  5. Chen K, Conti PS (2010) Target-specific delivery of peptide-based probes for PET imaging. Adv Drug Delivery Rev 62:1005–1022CrossRefGoogle Scholar
  6. Chrencik JE, Brooun A, Recht MI, Nicola G, Davis LK, Abagyan R, Widmer H, Pasquale EB, Kuhn P (2007) Three-dimensional structure of the EphB2 receptor in complex with an antagonistic peptide reveals a novel mode of inhibition. J Biol Chem 282:36505–36513PubMedCrossRefGoogle Scholar
  7. Glaser M, Robins EG (2009) ‘Click-labelling’ in PET-radiochemistry. J Label Compd Radiopharm 52:407–414CrossRefGoogle Scholar
  8. Glaser M, Arstad E, Luthra SK, Robins EG (2009) Two-step radiosynthesis of [F-18]N-succinimidyl-4-fluorobenzoate ([F-18]SFB). J Label Compd Radiopharm 52:327–330CrossRefGoogle Scholar
  9. Hausner SH, Marik J, Gagnon MKJ, Sutcliffe JL (2008) In vivo positron emission tomography (PET) imaging with an αvβ6 specific peptide radiolabeled using 18F-“click” chemistry: Evaluation and comparison with the corresponding 4-[18F]fluorobenzoyl- and 2-[18F]fluoropropionyl-peptides. J Med Chem 51:5901–5904PubMedCrossRefGoogle Scholar
  10. Helseth DL, Lechner JH, Veis A (1979) Role of the amino-terminal extra-helical region of type-I collagen in directing the 4D overlap in fibrillogenesis. Biopolymers 18:3005–3014CrossRefGoogle Scholar
  11. Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic Press, AmsterdamGoogle Scholar
  12. Hoppmann S, Haase C, Richter S, Pietzsch J (2008) Expression, purification and fluorine-18 radiolabeling of recombinant S100 proteins—potential probes for molecular imaging of receptor for advanced glycation endproducts (RAGE) in vivo. Protein Expres Purif 57:143–152CrossRefGoogle Scholar
  13. Jacobson O, Zhu L, Ma Y, Weiss ID, Sun X, Niu G, Kiesewetter DO, Chen X (2011) Rapid and simple one-step F-18 labeling of peptides. Bioconjugate Chem 22:422–428CrossRefGoogle Scholar
  14. Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34:595–598PubMedCrossRefGoogle Scholar
  15. Kapty J, Kniess T, Wuest F, Mercer JR (2011) Radiolabeling of phosphatidylserine-binding peptides with prosthetic groups N-[6-(4-[18F]fluorobenzylidene)aminooxyhexyl]maleimide ([18F]FBAM) and N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). Appl Radiat Isot 69:1218–1225PubMedCrossRefGoogle Scholar
  16. King DS, Fields CG, Fields GB (1990) A cleavage method which minimizes side reactions following Fmoc solid-phase peptide synthesis. Int J Peptide Protein Res 36:255–266CrossRefGoogle Scholar
  17. Koolpe M, Burgess R, Dail M, Pasquale EB (2005) EphB receptor-binding peptides identified by phage display enable design of an antagonist with ephrin-like affinity. J Biol Chem 280:17301–17311PubMedCrossRefGoogle Scholar
  18. Kuhnast B, Dolle F (2010) The challenge of labeling macromolecules with fluorine-18: Three decades of research. Curr Radiopharm 3:174–201CrossRefGoogle Scholar
  19. Li Z, Conti PS (2010) Radiopharmaceutical chemistry for positron emission tomography. Adv Drug Delivery Rev 62:1031–1051CrossRefGoogle Scholar
  20. Mäding P, Füchtner F, Wüst F (2005) Module-assisted synthesis of the bifunctional labelling agent N-succinimidyl 4-[F-18]fluorobenzoate ([F-18]SFB). Appl Radiat Isot 63:329–332PubMedCrossRefGoogle Scholar
  21. Mamat C, Ramenda T, Wuest FR (2009) Recent applications of click chemistry for the synthesis of radiotracers for molecular imaging. Mini-Rev Org Chem 6:21–34CrossRefGoogle Scholar
  22. Marik J, Hausner SH, Fix LA, Gagnon MKJ, Sutcliffe JL (2006) Solid-phase synthesis of 2-[18F]fluoropropionyl peptides. Bioconjugate Chem 17:1017–1021CrossRefGoogle Scholar
  23. Nagan N, Kagan HM (1994) Modulation of lysyl oxidase activity toward peptidyl lysine by vicinal dicarboxylic amino acid residues. Implications for collagen cross-linking. J Biol Chem 269:22366–22371PubMedGoogle Scholar
  24. Pimlott SL, Sutherland A (2010) Molecular tracers for the PET and SPECT imaging of disease. Chem Soc Rev 40:149–162PubMedCrossRefGoogle Scholar
  25. Rennert R, Neundorf I, Jahnke H-G, Suchowerskyj P, Dournaud P, Robitzki A, Beck-Sickinger AG (2008) Generation of carrier peptides for the delivery of nucleic acid drugs in primary cells. ChemMedChem 3:241–253PubMedCrossRefGoogle Scholar
  26. Richter S, Bergmann R, Pietzsch J, Ramenda T, Steinbach J, Wuest F (2009) Fluorine-18 labeling of phosphopeptides: A potential approach for the evaluation of phosphopeptide metabolism in vivo. Biopolymers (Pept Sci) 92:479–488CrossRefGoogle Scholar
  27. Ross TL (2010) The click chemistry approach applied to fluorine-18. Curr Radiopharm 3:243–247CrossRefGoogle Scholar
  28. Schottelius M (2010) Peptide radiopharmaceuticals. In: Wester HJ (ed) Pharmaceutical radiochemistry (I). SCINTOMICS Print Media and Publishing, Fürstenfeldbruck, pp 163–212Google Scholar
  29. Sewald N, Jakubke H-D (2002) Peptides: Chemistry and biology, 1st edn. Wiley-VCH, WeihnheimCrossRefGoogle Scholar
  30. Shepherd NE, Abbenante G, Fairlie DP (2004) Consecutive cyclic pentapeptide modules form short α-helices that are very stable to water and denaturants. Angew Chem Int Ed 43:2687–2690CrossRefGoogle Scholar
  31. Sutcliffe-Goulden JL, O’Doherty MJ, Bansal SS (2000) Solid-phase synthesis of [F-18]labelled peptides for positron emission tomography. Bioorg Med Chem Lett 10:1501–1503PubMedCrossRefGoogle Scholar
  32. Sutcliffe-Goulden JL, O’Doherty MJ, Marsden PK, Hart IR, Marshall JF, Bansal SS (2002) Rapid solid-phase synthesis and biodistribution of F-18-labelled linear peptides. Eur J Nucl Med Mol Im 29:754–759CrossRefGoogle Scholar
  33. Tang G, Zeng W, Yu M, Kabalka G (2008) Facile synthesis of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) for protein labeling. J Label Compd Radiopharm 51:68–71CrossRefGoogle Scholar
  34. Tang GH, Tang XL, Wang XL (2010) A facile automated synthesis of N-succinimidyl 4-[F-18]fluorobenzoate ([F-18]SFB) for F-18-labeled cell-penetrating peptide as PET tracer. J Label Compd Radiopharm 53:543–547CrossRefGoogle Scholar
  35. Tolmachev V, Stone-Elander S (2010) Radiolabelled proteins for positron emission tomography: pros and cons of labelling methods. Biochim Biophys Acta 1800:487–510PubMedCrossRefGoogle Scholar
  36. Vaidyanathan G, Zalutsky MR (2006) Synthesis of N-succinimidyl 4-[F-18] fluorobenzoate, an agent for labeling proteins and peptides with F-18. Nat Protoc 1:1655–1661PubMedCrossRefGoogle Scholar
  37. Watt PM (2009) Phenotypic screening of phylomer peptide libraries derived from genome fragments to identify and validate new targets and therapeutics. Future Med Chem 1:257–265PubMedCrossRefGoogle Scholar
  38. Wester HJ, Schottelius M (2007) Fluorine-18 labeling of peptides and proteins. In: Schubiger PA, Friebe M, Lehmann L (eds) PET Chemistry: the driving force in molecular imaging. Springer, New York, pp 79–111Google Scholar
  39. Wester HJ, Krummeich C, Fixmann A, Förmer W, Müller-Gärtner HW, Stöcklin G (1995) 18F- and 131I-labeling of the octadecapeptide apamin: A selective blocker of the Ca2+ dependent K+-channel. Syntheses and in vivo evaluation in NMRI mice. J Label Compd Radiopharm 37:S513–S515Google Scholar
  40. Wester HJ, Hamacher K, Stöcklin G (1996) A comparative study of NCA fluorine-18 labeling of proteins via acylation and photochemical conjugation. Nucl Med Biol 23:365–372PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Manuela Kuchar
    • 1
  • Marc Pretze
    • 1
  • Torsten Kniess
    • 1
  • Jörg Steinbach
    • 1
  • Jens Pietzsch
    • 1
  • Reik Löser
    • 1
    Email author
  1. 1.Institut für Radiopharmazie, Helmholtz-Zentrum Dresden-RossendorfDresdenGermany

Personalised recommendations