Amino Acids

, Volume 43, Issue 2, pp 897–909

Overexpression of the CHRNA5/A3/B4 genomic cluster in mice increases the sensitivity to nicotine and modifies its reinforcing effects

  • Xavier Gallego
  • Susanna Molas
  • Alejandro Amador-Arjona
  • Michael J. Marks
  • Noemí Robles
  • Patricia Murtra
  • Lluís Armengol
  • Rubén D. Fernández-Montes
  • Mònica Gratacòs
  • Martí Pumarola
  • Roberto Cabrera
  • Rafael Maldonado
  • Josefa Sabrià
  • Xavier Estivill
  • Mara Dierssen
Original Article

Abstract

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated pentameric ion channels that account for the effects of nicotine. Recent genetic studies have highlighted the importance of variants of the CHRNA5/A3/B4 genomic cluster in human nicotine dependence. Among these genetic variants those found in non-coding segments of the cluster may contribute to the pathophysiology of tobacco use through alterations in the expression of these genes. To discern the in vivo effects of the cluster, we generated a transgenic mouse overexpressing the human CHRNA5/A3/B4 cluster using a bacterial artificial chromosome. Transgenic mice showed increased functional α3β4-nAChRs in brain regions where these subunits are highly expressed under normal physiological conditions. Moreover, they exhibited increased sensitivity to the pharmacological effects of nicotine along with higher activation of the medial habenula and reduced activation of dopaminergic neurons in the ventral tegmental area after acute nicotine administration. Importantly, transgenic mice showed increased acquisition of nicotine self-administration (0.015 mg/kg per infusion) and a differential response in the progressive ratio test. Our study provides the first in vivo evidence of the involvement of the CHRNA5/A3/B4 genomic cluster in nicotine addiction through modifying the activity of brain regions responsible for the balance between the rewarding and the aversive properties of this drug.

Keywords

α5 α3 β4 Nicotinic receptor subunits CHRNA5/A3/B4 genomic cluster VTA MHb Nicotine addiction 

References

  1. Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89:73–120PubMedCrossRefGoogle Scholar
  2. Altafaj X et al (2001) Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down’s syndrome. Hum Mol Genet 10:1915–1923PubMedCrossRefGoogle Scholar
  3. Baker TB et al (2009) Human neuronal acetylcholine receptor A5-A3-B4 haplotypes are associated with multiple nicotine dependence phenotypes. Nicotine Tob Res 11:785–796PubMedCrossRefGoogle Scholar
  4. Benowitz NL (2010) Nicotine addiction. N Engl J Med 362:2295–2303PubMedCrossRefGoogle Scholar
  5. Berrettini W et al (2008) Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol psychiatry 13:368–373PubMedCrossRefGoogle Scholar
  6. Bierut LJ et al (2008) Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry 165:1163–1171PubMedCrossRefGoogle Scholar
  7. Doyle GA et al (2011) In vitro and ex vivo analysis of CHRNA3 and CHRNA5 haplotype expression. PloS one 6:e23373PubMedCrossRefGoogle Scholar
  8. Drenan RM et al (2008) In vivo activation of midbrain dopamine neurons via sensitized, high-affinity alpha 6 nicotinic acetylcholine receptors. Neuron 60:123–136PubMedCrossRefGoogle Scholar
  9. Escorihuela RM et al (1995) A behavioral assessment of Ts65Dn mice: a putative Down syndrome model. Neurosci Lett 199:143–146PubMedCrossRefGoogle Scholar
  10. Falvella FS et al (2009) Transcription deregulation at the 15q25 locus in association with lung adenocarcinoma risk. Clin Cancer Res 15:1837–1842PubMedCrossRefGoogle Scholar
  11. Fowler CD, Lu Q, Johnson PM, Marks MJ, Kenny PJ (2011) Habenular alpha5 nicotinic receptor subunit signalling controls nicotine intake. Nature 471:597–601PubMedCrossRefGoogle Scholar
  12. Frahm S et al (2011) Aversion to nicotine is regulated by the balanced activity of beta4 and alpha5 nicotinic receptor subunits in the medial habenula. Neuron 70:522–535PubMedCrossRefGoogle Scholar
  13. Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic Press, San Diego p xxii (186) of platesGoogle Scholar
  14. Gahring LC, Rogers SW (2010) Nicotinic receptor subunit alpha5 modifies assembly, up-regulation, and response to pro-inflammatory cytokines. J Biol Chem 285:26049–26057PubMedCrossRefGoogle Scholar
  15. Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74:363–396PubMedCrossRefGoogle Scholar
  16. Gotti C et al (2009) Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem Pharmacol 78:703–711PubMedCrossRefGoogle Scholar
  17. Greenbaum L, Lerer B (2009) Differential contribution of genetic variation in multiple brain nicotinic cholinergic receptors to nicotine dependence: recent progress and emerging open questions. Mol Psychiatry 14:912–945PubMedCrossRefGoogle Scholar
  18. Kedmi M, Orr-Urtreger A (2007) Differential brain transcriptome of beta4 nAChR subunit-deficient mice: is it the effect of the null mutation or the background strain? Physiol Genomics 28:213–222PubMedGoogle Scholar
  19. Klink R, de Kerchove d’Exaerde A, Zoli M, Changeux JP (2001) Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci Off J Soc Neurosci 21:1452–1463Google Scholar
  20. Li MD et al (2010a) Association and interaction analysis of variants in CHRNA5/CHRNA3/CHRNB4 gene cluster with nicotine dependence in African and European Americans. Am J Med Genet B Neuropsychiatr Genet Off Publ Int Soc Psychiatric Genet 153B:745–756Google Scholar
  21. Li MD et al (2010b) Associations of variants in CHRNA5/A3/B4 gene cluster with smoking behaviors in a Korean population. PloS one 5:e12183PubMedCrossRefGoogle Scholar
  22. Maccarrone M et al (2002) Age-related changes of anandamide metabolism in CB1 cannabinoid receptor knockout mice: correlation with behaviour. Eur J Neurosci 15:1178–1186PubMedCrossRefGoogle Scholar
  23. Marubio LM et al (2003) Effects of nicotine in the dopaminergic system of mice lacking the alpha4 subunit of neuronal nicotinic acetylcholine receptors. Eur J Neurosci 17:1329–1337PubMedCrossRefGoogle Scholar
  24. Maskos U et al (2005) Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature 436:103–107PubMedCrossRefGoogle Scholar
  25. McDonough J, Deneris E (1997) beta43′: an enhancer displaying neural-restricted activity is located in the 3′-untranslated exon of the rat nicotinic acetylcholine receptor beta4 gene. J Neurosci Off J Soc Neurosci 17:2273–2283Google Scholar
  26. Mineur YS, Picciotto MR (2008) Genetics of nicotinic acetylcholine receptors: relevance to nicotine addiction. Biochem Pharmacol 75:323–333PubMedCrossRefGoogle Scholar
  27. Mukhin AG et al (2000) 5-Iodo-A-85380, an alpha4beta2 subtype-selective ligand for nicotinic acetylcholine receptors. Mol Pharmacol 57:642–649PubMedGoogle Scholar
  28. Nolan PM et al (2000) Implementation of a large-scale ENU mutagenesis program: towards increasing the mouse mutant resource. Mamm genome Off J Int Mamm Genome Soc 11:500–506CrossRefGoogle Scholar
  29. Saccone NL et al (2009a) Multiple distinct risk loci for nicotine dependence identified by dense coverage of the complete family of nicotinic receptor subunit (CHRN) genes. Am J Med Genet B Neuropsychiatr Genet Off Publ Int Soc Psychiatric Genet 150B:453–466Google Scholar
  30. Saccone NL et al (2009b) The CHRNA5-CHRNA3-CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European-Americans. Cancer Res 69:6848–6856PubMedCrossRefGoogle Scholar
  31. Salas R et al (2003a) The nicotinic acetylcholine receptor subunit alpha 5 mediates short-term effects of nicotine in vivo. Mol Pharmacol 63:1059–1066PubMedCrossRefGoogle Scholar
  32. Salas R, Pieri F, Fung B, Dani JA, De Biasi M (2003b) Altered anxiety-related responses in mutant mice lacking the beta4 subunit of the nicotinic receptor. J Neurosci Off J Soc Neurosci 23:6255–6263Google Scholar
  33. Salas R, Pieri F, De Biasi M (2004) Decreased signs of nicotine withdrawal in mice null for the beta4 nicotinic acetylcholine receptor subunit. J Neurosci Off J Soc Neurosci 24:10035–10039CrossRefGoogle Scholar
  34. Schlaepfer IR et al (2008) The CHRNA5/A3/B4 gene cluster variability as an important determinant of early alcohol and tobacco initiation in young adults. Biol Psychiatry 63:1039–1046PubMedCrossRefGoogle Scholar
  35. Soria G et al (2005) Lack of CB1 cannabinoid receptor impairs cocaine self-administration. Neuropsychopharmacology 30:1670–1680PubMedCrossRefGoogle Scholar
  36. Tapper AR et al (2004) Nicotine activation of alpha4* receptors: sufficient for reward, tolerance, and sensitization. Science 306:1029–1032PubMedCrossRefGoogle Scholar
  37. Wang JC et al (2009) Risk for nicotine dependence and lung cancer is conferred by mRNA expression levels and amino acid change in CHRNA5. Hum Mol Genet 18:3125–3135PubMedCrossRefGoogle Scholar
  38. Xu X, Scott MM, Deneris ES (2006) Shared long-range regulatory elements coordinate expression of a gene cluster encoding nicotinic receptor heteromeric subtypes. Mol Cell Biol 26:5636–5649PubMedCrossRefGoogle Scholar
  39. Zhu PJ, Stewart RR, McIntosh JM, Weight FF (2005) Activation of nicotinic acetylcholine receptors increases the frequency of spontaneous GABAergic IPSCs in rat basolateral amygdala neurons. J Neurophysiol 94:3081–3091PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Xavier Gallego
    • 1
    • 2
    • 8
  • Susanna Molas
    • 1
    • 2
  • Alejandro Amador-Arjona
    • 1
    • 2
  • Michael J. Marks
    • 8
  • Noemí Robles
    • 3
  • Patricia Murtra
    • 4
    • 5
  • Lluís Armengol
    • 1
    • 7
  • Rubén D. Fernández-Montes
    • 1
    • 2
  • Mònica Gratacòs
    • 1
    • 7
  • Martí Pumarola
    • 6
  • Roberto Cabrera
    • 4
  • Rafael Maldonado
    • 4
  • Josefa Sabrià
    • 3
  • Xavier Estivill
    • 1
    • 7
  • Mara Dierssen
    • 1
    • 2
  1. 1.Genes and Disease ProgramCenter for Genomic Regulation (CRG)BarcelonaSpain
  2. 2.CIBER de Enfermedades Raras (CIBERER), CRG and UPFBarcelonaSpain
  3. 3.Department of BiochemistryAutonomous University of Barcelona (UAB)BarcelonaSpain
  4. 4.Unit of NeuropharmacologyPompeu Fabra University (UPF)BarcelonaSpain
  5. 5.Institute of NeuroscienceMiguel Hernández University, Consejo Superior de Investigaciones Científicas (CSIC)AlicanteSpain
  6. 6.Department of Animal Medicine and SurgeryAutonomous University of Barcelona (UAB)BarcelonaSpain
  7. 7.Unit of GeneticsPompeu Fabra University (UPF)BarcelonaSpain
  8. 8.Institute for Behavioral GeneticsUniversity of Colorado at BoulderBoulderUSA

Personalised recommendations