Advertisement

Amino Acids

, Volume 43, Issue 2, pp 763–771 | Cite as

Heterologous expression and characterization of the hydrophobin HFBI in Pichia pastoris and evaluation of its contribution to the food industry

  • Baolong Niu
  • Dandan Wang
  • Yanyan Yang
  • Haijin Xu
  • Mingqiang QiaoEmail author
Original Article

Abstract

The class II hydrophobin HFBI from Trichoderma reesei was heterologously expressed by Pichia pastoris using pPIC9 vector under the control of the promoter AOX1. The recombinant HFBI (rHFBI) was purified by ultrafiltration and reverse-phase high performance liquid chromatography. Tricine-SDS-PAGE and Western blotting demonstrated that rHFBI with the expected molecular weight of 7.5 kDa was secreted into the culture medium. X-ray photoelectron spectroscopy and water contact angle measurements indicated that rHFBI could lead to the conversion of the wettability of the hydrophobic siliconized glass and hydrophilic mica surfaces relying on the self-assembly membrane on hydrophobic/hydrophilic interfaces. It was demonstrated that rHFBI had the ability to stabilize oil droplets, which was far excess of the class I hydrophobin HGFI heterologously expressed in P. pastoris (rHGFI) and the typical food emulsifier sodium caseinate. In gushing experiments, it was shown that rHFBI was a strong gushing inducer in beer, whereas rHGFI did not display any signs of gushing. This provided the potential of rHFBI to be used as a novel emulsifying agent and a predictor of gushing risk.

Keywords

Hydrophobin Self-assembly Heterologous expression Emulsion Gushing 

Notes

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (Grant #31170066), 973 Program of China (Grant #2011CBA00802), Program for New Century Excellent Talents in University from the Ministry of Education of China (Grant #NCET-06-0212) and Sino-Finnish Scientific and Technological Cooperation Project from the Ministry of Science and Technology of China (Grant #2006DFA32360).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Asakawa H, Tahara S, Nakamichi M, Takehara K, Ikeno S, Linder MB, Haruyama T (2009) The amphiphilic protein HFBII as a genetically taggable molecular carrier for the formation of a self-organized functional protein layer on a solid surface. Langmuir 25(16):8841–8844. doi: 10.1021/La900974n PubMedCrossRefGoogle Scholar
  2. Askolin S, Nakari-Setälä T, Tenkanen M (2001) Overproduction, purification, and characterization of the Trichoderma reesei hydrophobin HFBI. Appl Microbiol Biotechnol 57(1–2):124–130. doi: 10.1007/s002530100728 PubMedGoogle Scholar
  3. Askolin S, Linder M, Scholtmeijer K, Tenkanen M, Penttilä M, de Vocht ML, Wösten HAB (2006) Interaction and comparison of a class I hydrophobin from Schizophyllum commune and class II hydrophobins from Trichoderma reesei. Biomacromolecules 7(4):1295–1301. doi: 10.1021/Bm050676s PubMedCrossRefGoogle Scholar
  4. Basheva ES, Kralchevsky PA, Danov KD, Stoyanov SD, Blijdenstein TBJ, Pelan EG, Lips A (2011) Self-assembled bilayers from the protein HFBII hydrophobin: nature of the adhesion energy. Langmuir 27(8):4481–4488. doi: 10.1021/La2001943 PubMedCrossRefGoogle Scholar
  5. Blijdenstein TBJ, de Groot PWN, Stoyanov SD (2010) On the link between foam coarsening and surface rheology: why hydrophobins are so different. Soft Matter 6(8):1799–1808. doi: 10.1039/B925648b CrossRefGoogle Scholar
  6. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. Fems Microbiol Rev 24(1):45–66PubMedCrossRefGoogle Scholar
  7. Cox AR, Aldred DL, Russell AB (2009) Exceptional stability of food foams using class II hydrophobin HFBII. Food Hydrocolloids 23(2):366–376. doi: 10.1016/j.foodhyd.2008.03.001 CrossRefGoogle Scholar
  8. Cox AR, Cagnol F, Russell AB, Izzard MJ (2007) Surface properties of class II hydrophobins from Trichoderma reesei and influence on bubble stability. Langmuir 23(15):7995–8002. doi: 10.1021/La700451g PubMedCrossRefGoogle Scholar
  9. Cregg JM, Vedvick TS, Raschke WC (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology 11(8):905–910PubMedCrossRefGoogle Scholar
  10. Garti N (1999) What can nature offer from and emulsifier point of view: trends and progress? Colloids Surf A Physicochem Eng Aspects 152(1):125–146. doi: 10.1016/S0927-7757(98)00621-9 CrossRefGoogle Scholar
  11. Ghosh R (2001) Fractionation of biological macromolecules using carrier phase ultrafiltration. Biotechnol Bioeng 74(1):1–11PubMedCrossRefGoogle Scholar
  12. Hakanpää J, Paananen A, Askolin S, Nakari-Setälä T, Parkkinen T, Penttilä M, Linder MB, Rouvinen J (2004) Atomic resolution structure of the HFBII hydrophobin, a self-assembling amphiphile. J Biol Chem 279(1):534–539. doi: 10.1074/jbc.M309650200 PubMedCrossRefGoogle Scholar
  13. Hakanpää J, Szilvay GR, Kaljunen H, Maksimainen M, Linder M, Rouvinen J (2006) Two crystal structures of Trichoderma reesei hydrophobin HFBI—the structure of a protein amphiphile with and without detergent interaction. Protein Sci 15(9):2129–2140. doi: 10.1110/Ps.062326706 PubMedCrossRefGoogle Scholar
  14. Hou S, Li XX, Li XY, Feng XZ, Wang R, Wang C, Yu L, Qiao MQ (2009) Surface modification using a novel type I hydrophobin HGFI. Anal Bioanal Chem 394(3):783–789. doi: 10.1007/s00216-009-2776-y PubMedCrossRefGoogle Scholar
  15. Isono Y, Nakajima M (1999) Application of hydrophobic membrane for alcohol separation from alcohol/aqueous biphase mixture. Sep Purif Technol 17(1):77–82CrossRefGoogle Scholar
  16. Kisko K, Szilvay GR, Vuorimaa E, Lemmetyinen H, Linder MB, Torkkeli M, Serimaa R (2009) Self-assembled films of hydrophobin proteins HFBI and HFBII studied in situ at the air/water interface. Langmuir 25:1612–1619PubMedCrossRefGoogle Scholar
  17. Kwan AH, Macindoe I, Vukasin PV, Morris VK, Kass I, Gupte R, Mark AE, Templeton MD, Mackay JP, Sunde M (2008) The Cys3-Cys4 loop of the hydrophobin EAS Is not required for rodlet formation and surface activity. J Mol Biol 382(3):708–720PubMedCrossRefGoogle Scholar
  18. Lahtinen T, Linder MB, Nakari-Setälä T, Oker-Blom C (2008) Hydrophobin (HFBI): a potential fusion partner for one-step purification of recombinant proteins from insect cells. Protein Express Purif 59(1):18–24. doi: 10.1016/j.pep.2007.12.014 CrossRefGoogle Scholar
  19. Linder M, Selber K, Nakari-Setälä T, Qiao MQ, Kula MR, Penttilä M (2001) The hydrophobins HFBI and HFBII from Trichoderma reesei showing efficient interactions with nonionic surfactants in aqueous two-phase systems. Biomacromolecules 2(2):511–517. doi: 10.1021/Bm0001493 PubMedCrossRefGoogle Scholar
  20. Linder MB (2009) Hydrophobins: proteins that self assemble at interfaces. Curr Opin Colloid Interf Sci 14(5):356–363CrossRefGoogle Scholar
  21. Linder MB, Szilvay GR, Nakari-Setälä T, Penttilä ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29(5):877–896. doi: 10.1016/j.femsre.2005.01.004 PubMedCrossRefGoogle Scholar
  22. Lumsdon SO, Green J, Stieglitz B (2005) Adsorption of hydrophobin proteins at hydrophobic and hydrophilic interfaces. Colloids Surf B Biointerf 44(4):172–178. doi: 10.1016/j.colsurfb.2005.06.012 CrossRefGoogle Scholar
  23. Lutterschmid G, Muranyi M, Stübner M, Vogel RF, Niessen L (2011) Heterologous expression of surface-active proteins from barley and filamentous fungi in Pichia pastoris and characterization of their contribution to beer gushing. Int J Food Microbiol 147(1):17–25. doi: 10.1016/j.ijfoodmicro.2011.02.030 PubMedCrossRefGoogle Scholar
  24. Lutterschmid G, Stübner M, Vogel RF, Niessen L (2010) Induction of Gushing with Recombinant Class II Hydrophobin FcHyd5p from Fusarium culmorum and the Impact of Hop Compounds on its Gushing Potential. J Inst Brew 116(4):339–347Google Scholar
  25. Misra R, Li J, Cannon GC, Morgan SE (2006) Nanoscale reduction in surface friction of polymer surfaces modified with Sc3 hydrophobin from Schizophyllum commune. Biomacromolecules 7(5):1463–1470. doi: 10.1021/Bm050983y PubMedCrossRefGoogle Scholar
  26. Murray BS (2007) Stabilization of bubbles and foams. Curr Opin Colloid Interf Sci 12(4–5):232–241. doi: 10.1016/j.cocis.2007.07.009 CrossRefGoogle Scholar
  27. Nakari-Setälä T, Aro N, Kalkkinen N, Alatalo E, Penttilä M (1996) Genetic and biochemical characterization of the Trichoderma reesei hydrophobin HFBI. Eur J Biochem 235(1–2):248–255PubMedCrossRefGoogle Scholar
  28. Pedersen MH, Borodina I, Moresco JL, Svendsen WE, Frisvad JC, Søndergaard I (2011) High-yield production of hydrophobins RodA and RodB from Aspergillus fumigatus in Pichia pastoris. Appl Microbiol Biotechnol 90(6):1923–1932. doi: 10.1007/s00253-011-3235-1 PubMedCrossRefGoogle Scholar
  29. Qin M, Wang LK, Feng XZ, Yang YL, Wang R, Wang C, Yu L, Shao B, Qiao MQ (2007) Bioactive surface modification of mica and poly(dimethylsiloxane) with hydrophobins for protein immobilization. Langmuir 23(8):4465–4471. doi: 10.1021/La062744h PubMedCrossRefGoogle Scholar
  30. Sarlin T, Nakari-Setälä T, Linder M, Penttilä M, Haikara A (2005) Fungal hydrophobins as predictors of the gushing activity of malt. J Inst Brew 111(2):105–111Google Scholar
  31. Sarlin T, Vilpola A, Kotaviita E, Olkku J, Haikara A (2007) Fungal hydrophobins in the barley-to-beer chain. J Inst Brew 113(2):147–153CrossRefGoogle Scholar
  32. Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166(2):368–379PubMedCrossRefGoogle Scholar
  33. Shokribousjein Z, Deckers SM, Gebruers K, Lorgouilloux Y, Baggerman G, Verachtert H, Delcour JA, Etienne P, Rock J-M, Michiels C, Derdelinckx G (2011) Hydrophobins, beer foaming and gushing. Cerevisia 35(4):85–101Google Scholar
  34. Stübner M, Lutterschmid G, Vogel RF, Niessen L (2010) Heterologous expression of the hydrophobin FcHyd5p from Fusarium culmorum in Pichia pastoris and evaluation of its surface activity and contribution to gushing of carbonated beverages. Int J Food Microbiol 141(1–2):110–115. doi: 10.1016/j.ijfoodmicro.2010.03.003 PubMedCrossRefGoogle Scholar
  35. Sunde M, Kwan AHY, Templeton MD, Beever RE, Mackay JP (2008) Structural analysis of hydrophobins. Micron 39(7):773–784. doi: 10.1016/j.micron.2007.08.003 PubMedCrossRefGoogle Scholar
  36. Tchuenbou-Magaia FL, Norton IT, Cox PW (2009) Hydrophobins stabilised air-filled emulsions for the food industry. Food Hydrocolloids 23(7):1877–1885. doi: 10.1016/j.foodhyd.2009.03.005 CrossRefGoogle Scholar
  37. Uehara H, Du Choi B, Park E, Okabe M (2000) Expression of mouse α-amylase gene in methylotrophic yeast Pichia pastoris. Biotechnol Bioprocess Eng 5(1):7–12. doi: 10.1007/bf02932345 CrossRefGoogle Scholar
  38. Wan YH, Ghosh R, Cui ZF (2002) High-resolution plasma protein fractionation using ultrafiltration. Desalination 144(1–3):301–306. doi: Pii.S0011-9164(02)00332-6 CrossRefGoogle Scholar
  39. Wang ZF, Feng SR, Huang YJ, Li S, Xu HJ, Zhang XM, Bai YL, Qiao MQ (2010a) Expression and characterization of a Grifola frondosa hydrophobin in Pichia pastoris. Protein Express Purif 72(1):19–25. doi: 10.1016/j.pep.2010.03.017 CrossRefGoogle Scholar
  40. Wang ZF, Huang YJ, Li S, Xu HJ, Linder MB, Qiao MQ (2010b) Hydrophilic modification of polystyrene with hydrophobin for time-resolved immunofluorometric assay. Biosens Bioelectr 26(3):1074–1079. doi: 10.1016/j.bios.2010.08.059 CrossRefGoogle Scholar
  41. Wessels JGH (1994) Developmental regulation of fungal cell wall formation. Annu Rev Phytopathol 32:413–437CrossRefGoogle Scholar
  42. Wessels JGH (1996) Hydrophobins: proteins that change the nature of the fungal surface. Adv Microbial Physiol 38:1–45CrossRefGoogle Scholar
  43. Wösten HAB (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–646PubMedCrossRefGoogle Scholar
  44. Yu L, Zhang BH, Szilvay GR, Sun R, Jänis J, Wang ZF, Feng SR, Xu HJ, Linder MB, Qiao MQ (2008) Protein HGFI from the edible mushroom Grifola frondosa is a novel 8 kDa class I hydrophobin that forms rodlets in compressed monolayers. Microbiol Sgm 154:1677–1685. doi: 10.1099/mic.0.2007/015263-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Baolong Niu
    • 1
  • Dandan Wang
    • 1
  • Yanyan Yang
    • 1
  • Haijin Xu
    • 1
  • Mingqiang Qiao
    • 1
    Email author
  1. 1.The Key Laboratory of Bioactive MaterialsMinistry of Education, College of Life Sciences, Nankai UniversityTianjinPeople’s Republic of China

Personalised recommendations