Amino Acids

, Volume 43, Issue 2, pp 751–761 | Cite as

Lasiocepsin, a novel cyclic antimicrobial peptide from the venom of eusocial bee Lasioglossum laticeps (Hymenoptera: Halictidae)

  • Lenka Monincová
  • Jiřina Slaninová
  • Vladimír Fučík
  • Oldřich Hovorka
  • Zdeněk Voburka
  • Lucie Bednárová
  • Petr Maloň
  • Jitka Štokrová
  • Václav Čeřovský
Original Article

Abstract

In the venom of eusocial bee Lasioglossum laticeps, we identified a novel unique antimicrobial peptide named lasiocepsin consisting of 27 amino acid residues and two disulfide bridges. After identifying its primary structure, we synthesized lasiocepsin by solid-phase peptide synthesis using two different approaches for oxidative folding. The oxidative folding of fully deprotected linear peptide resulted in a mixture of three products differing in the pattern of disulfide bridges. Regioselective disulfide bond formation significantly improved the yield of desired product. The synthetic lasiocepsin possessed antimicrobial activity against both Gram-positive and -negative bacteria, antifungal activity against Candida albicans, and no hemolytic activity against human erythrocytes. We synthesized two lasiocepsin analogs cyclized through one native disulfide bridge in different positions and having the remaining two cysteines substituted by alanines. The analog cyclized through a Cys8–Cys25 disulfide bridge showed reduced antimicrobial activity compared to the native peptide while the second one (Cys17–Cys27) was almost inactive. Linear lasiocepsin having all four cysteine residues substituted by alanines or alkylated was also inactive. That was in contrast to the linear lasiocepsin with all four cysteine residues non-paired, which exhibited remarkable antimicrobial activity. The shortening of lasiocepsin by several amino acid residues either from the N- or C-terminal resulted in significant loss of antimicrobial activity. Study of Bacillus subtilis cells treated by lasiocepsin using transmission electron microscopy showed leakage of bacterial content mainly from the holes localized at the ends of the bacterial cells.

Keywords

Antimicrobial peptides Analogs Disulfide bridge Peptide synthesis Wild-bee venom CD spectroscopy 

Supplementary material

726_2011_1125_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (PDF 1483 kb)

References

  1. Amiche M, Galanth C (2011) Dermaseptins as models for the elucidation of membrane-acting helical amphipathic antimicrobial peptides. Curr Pharm Biotechno 12:1184–1193CrossRefGoogle Scholar
  2. Čeřovský V, Slaninová J, Fučík V, Hulačová H, Borovičková L, Ježek R, Bednárová L (2008a) New potent antimicrobial peptides from the venom of Polistinae wasps and their analogs. Peptides 29:992–1003PubMedCrossRefGoogle Scholar
  3. Čeřovský V, Hovorka O, Cvačka J, Voburka Z, Bednárová L, Borovičková L, Slaninová J, Fučík V (2008b) Melectin: a novel antimicrobial peptide from the venom of the cleptoparasitic bee Melecta albifrons. Chem Bio Chem 9:2815–2821PubMedGoogle Scholar
  4. Čeřovský V, Buděšínský M, Hovorka O, Cvačka J, Voburka Z, Slaninová J, Borovičková L, Fučík V, Bednárová L, Votruba I, Straka J (2009) Lasioglossins: three novel antimicrobial peptides from the venom of the eusocial bee Lasioglossum laticeps (Hymenoptera: Halictidae). Chem Bio Chem 10:2089–2099PubMedGoogle Scholar
  5. Čeřovský V, Slaninová J, Fučík V, Monincová L, Bednárová L, Maloň P, Štokrová J (2011) Lucifensin, a novel insect defensin of medicinal maggots: synthesis and structural study. Chem Bio Chem 12:1352–1361Google Scholar
  6. Chen Y, Mant CT, Farmer SW, Hancock REW, Vasil ML, Hodges RS (2005) Rational design of α-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem 280:12316–12329Google Scholar
  7. Dawson RM, Liu C-Q (2010) Disulphide bonds of the peptide protegrin-1 are not essential for antimicrobial activity and haemolytic activity. Int J Antimicrob Agents 36:579–580PubMedCrossRefGoogle Scholar
  8. Dennison SR, Whittaker M, Hartus F, Phoenix DA (2006) Anticancer α-helical peptides and structure/function relationships underpinning their interactions with tumor cell membranes. Curr Protein Peptide Sci 7:487–499CrossRefGoogle Scholar
  9. Epand RM, Epand RF (2009) Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochem Biophys Acta 1788:289–294PubMedCrossRefGoogle Scholar
  10. Epand RM, Epand RF (2011) Bacterial membrane lipids in the action of antimicrobial targets. J Pept Sci 17:298–305PubMedCrossRefGoogle Scholar
  11. Fázio MA, Iliveira VX Jr, Bulet P, Miranda MTM, Daffre S, Miranda A (2006) Structure-activity relationship studies of gomesin: importance of the disulfide bridges for conformation, bioactivities, and serum stability. Biopolymers (Peptide Scince) 84:205–218CrossRefGoogle Scholar
  12. Giuliani A, Pirri G, Nicoletto SF (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Centr Eur J Biol 2:1–33CrossRefGoogle Scholar
  13. Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1:143–152PubMedCrossRefGoogle Scholar
  14. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202PubMedCrossRefGoogle Scholar
  15. Kim J-Y, Park S-C, Yoon M-Y, Hahm K-S, Park Y (2011) C-terminal amidation of PMAP-23: translocation to the inner membrane of gram-negative bacteria. Amino Acids 40:183–195PubMedCrossRefGoogle Scholar
  16. Klüver E, Schulz-Maronde S, Scheid S, Meyer B, Forssmann WG, Adermann K (2005) Structure–activity relation of human β-defensin 3: influence of disulfide bonds and cysteine substitution on antimicrobial activity and cytotoxicity. Biochemistry 44:9804–9816PubMedCrossRefGoogle Scholar
  17. Konno K, Rangel M, Oliveira JS, dos Santos Cabrera MP, Fontana R, Hirata IY et al (2007) Decoralin, a novel linear cationic α-helical peptide from the venom of the solitary eumenine wasp oreumenes decoratus. Peptides 28:2320–2327PubMedCrossRefGoogle Scholar
  18. Kuhn-Nentwig L (2003) Antimicrobial and cytolytic peptides of venomous arthropods. Cell Mol Life Sci 60:2651–2668PubMedCrossRefGoogle Scholar
  19. Kuzuhara T, Nakajima Y, Matsuyama K, Natori S (1990) Determination of the disulfide array in sapecin, and antibacterial peptide of Sarcophaga peprigrina (Flesh fly). J Biochem 107:514–518PubMedGoogle Scholar
  20. Kwon M-Y, Hong S-Y, Lee K-H (1998) Structure–activity analysis of brevinin 1E amide, an antimicrobial peptide from Rana esculenta. Biochim Biophys Acta 1387:239–248PubMedCrossRefGoogle Scholar
  21. Labbé-Julié C, Granier C, Albericio F, Defendini M-L, Ceard B, Rochat H, Van Rietschoten J (1991) Binding and toxicity of apamin. Characterization of the active site. Eur J Biochem 196:639–645CrossRefGoogle Scholar
  22. Liu S, Zhou L, Li J, Suresh A, Verma C, Foo YH, Yap EPH, Tan DTH, Beuerman RW (2008) Linear analogues of human β-defensin 3: concepts for design of antimicrobial peptides with reduced cytotoxicity to mammalian cells. Chem Bio Chem 9:964–973PubMedGoogle Scholar
  23. Mandal M, Jagannadham MV, Nagaraj R (2002) Antimicrobial activities and conformations of bovine β-defensin BNBD-12 and analogs: structural and disulfide bridge requirements for activity. Peptides 23:413–418PubMedCrossRefGoogle Scholar
  24. Monincová L, Buděšínský M, Slaninová J, Hovorka O, Cvačka J, Voburka Z, Fučík V, Borovičková L, Bednárová L, Straka J, Čeřovský V (2010) Novel antimicrobial peptides from the venom of the eusocial bee Halictus sexcinctus (Hymenoptera: Halictidae) and their analogs. Amino Acids 39:763–775PubMedCrossRefGoogle Scholar
  25. Oren Z, Shai Y (1998) Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers (Peptide Science) 47:451–463CrossRefGoogle Scholar
  26. Oyston PCF, Fox MA, Richards SJ, Clark GC (2009) Novel peptide therapeutics for treatment of infections. J Med Microb 58:977–987CrossRefGoogle Scholar
  27. Rivas L, Luque-Ortega JR, Andreu D (2009) Amphibian antimicrobial peptides and protozoa: lessons from parasites. Biochim Biophys Acta 1788:1570–1581PubMedCrossRefGoogle Scholar
  28. Schroeder BO, Wu Z, Nuding S, Groscurth S, Marcinowski M, Beisner J, Buchner J, Schaller M, Stange EF, Wehkamp J (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1. Nature 469:419–423PubMedCrossRefGoogle Scholar
  29. Slaninová J, Putnová H, Borovičková L, Šácha P, Čeřovská V, Monincová L, Fučík V (2011) The antifungal effect of peptides from the hymenoptera venom and their analogs. Centr Eur J Biol 6:150–159CrossRefGoogle Scholar
  30. Toke O (2005) Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers (Peptide Science) 80:717–735CrossRefGoogle Scholar
  31. Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, α-helical antimicrobial peptides. Biopolymers (Peptide Science) 55:4–30CrossRefGoogle Scholar
  32. Varkey J, Nagaraj R (2005) Antibacterial activity of human neutrophil defensin HNP-1 analogs without cysteines. Antimicrob Agents Chemother 49:4561–4566PubMedCrossRefGoogle Scholar
  33. Vasileiou Z, Barlos KK, Gatos D, Adermann K, Deraison C, Barlos K (2010) Synthesis of the proteinase inhibitor LEKTI domain 6 by the fragment condensation method and regioselective disulfide bond formation. Biopolymers 94:339–349PubMedCrossRefGoogle Scholar
  34. Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37:D933–D937PubMedCrossRefGoogle Scholar
  35. Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400PubMedCrossRefGoogle Scholar
  36. Wimley WC, Hristova K (2011) Antimicrobial peptides: successes, challenges and unanswered questions. J Membrane Biol 239:27–34CrossRefGoogle Scholar
  37. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharm Rev 55:27–55PubMedCrossRefGoogle Scholar
  38. Yeung ATY, Gellatly SL, Hancock REW (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68:2161–2176PubMedCrossRefGoogle Scholar
  39. Zaiou M (2007) Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J Mol Med 85:317–329PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Lenka Monincová
    • 1
  • Jiřina Slaninová
    • 1
  • Vladimír Fučík
    • 1
  • Oldřich Hovorka
    • 1
  • Zdeněk Voburka
    • 1
  • Lucie Bednárová
    • 1
  • Petr Maloň
    • 1
  • Jitka Štokrová
    • 1
  • Václav Čeřovský
    • 1
  1. 1.Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations