Amino Acids

, Volume 44, Issue 1, pp 111–118

Possible involvement of transglutaminase-catalyzed reactions in the physiopathology of neurodegenerative diseases

  • Antonio Martin
  • Alessandro Giuliano
  • Domenico Collaro
  • Giulia De Vivo
  • Carla Sedia
  • Enrica Serretiello
  • Vittorio Gentile
Review Article


Transglutaminases are ubiquitous enzymes, which catalyze post-translational modifications of proteins. Recently, transglutaminases and tranglutaminase-catalyzed post-translational modification of proteins have been shown to be involved in the molecular mechanisms responsible for several human diseases. Transglutaminase activity has been hypothesized to be involved also in the pathogenetic mechanisms responsible for human neurodegenerative diseases. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, supranuclear palsy, Huntington’s disease and other polyglutamine diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. In this review, we focus on the possible molecular mechanisms by which transglutaminase activity could be involved in the pathogenesis of neurodegenerative diseases, and on the possible therapeutic effects of selective transglutaminase inhibitors for the cure of patients with diseases characterized by aberrant transglutaminase activity.


Transglutaminases Post-translational modifications of proteins Nervous System Neurodegenerative diseases 


  1. Achyuthan KE, Greenberg CS (1987) Identification of a guanosine triphosphate-binding site on guinea pig liver transglutaminase. Role of GTP and calcium ions in modulating activity. J Biol Chem 262:1901–1906PubMedGoogle Scholar
  2. Adams RD, Victor M (1993) Principles of neurology. McGraw-Hill, Inc. New YorkGoogle Scholar
  3. Appelt DM, Kopen GC, Boyne LJ, Balin BJ (1996) Localization of transglutaminase in hippocampal neurons: implications for Alzheimer’s disease. J Histochem Cytochem 44:1421–1427PubMedCrossRefGoogle Scholar
  4. Citron BA, Santa Cruz KS, Davies PJ, Festoff BW (2001) Intron-exon swapping of transglutaminase mRNA and neuronal tau aggregation in Alzheimer’s disease. J Biol Chem 276:3295–3301PubMedCrossRefGoogle Scholar
  5. Citron BA, Suo Z, SantaCruz K, Davies PJ, Qin F, Festoff BW (2002) Protein crosslinking, tissue transglutaminase, alternative splicing and neurodegeneration. Neurochem Int 40:69–78PubMedCrossRefGoogle Scholar
  6. Davies JE, Rose C, Sarkar S, Rubinsztein DC (2010) Cystamine suppresses polyalanine toxicity in a mouse model of oculopharyngeal muscular dystrophy. Sci Transl Med 2:34ra40Google Scholar
  7. De Laurenzi V, Melino G (2001) Gene disruption of tissue transglutaminase. Mol Cell Biol 21:148–155PubMedCrossRefGoogle Scholar
  8. Dedeoglu A, Kubilus JK, Jeitner TM, Matson SA, Bogdanov M, Kowall NW, Matson WR, Cooper AJ, Ratan RR, Beal MF, Hersch SM, Ferrante RJ (2002) Therapeutic effects of cystamine in a murine model of Huntington’s disease. J Neurosci 22:8942–8950PubMedGoogle Scholar
  9. Dudek SM, Johnson GV (1993) Transglutaminase catalyzes the formation of sodium dodecyl sulfate-insoluble, Alz-50-reactive polymers of tau. J Neurochem 61:1159–1162PubMedCrossRefGoogle Scholar
  10. Dudek SM, Johnson GV (1994) Transglutaminase facilitates the formation of polymers of the beta-amyloid peptide. Brain Res 651:129–133PubMedCrossRefGoogle Scholar
  11. Fleckenstein B, Qiao SW, Larsen MR, Jung G, Roepstorff P, Sollid LM (2004) Molecular characterization of covalent complexes between tissue transglutaminase and gliadin peptides. J Biol Chem 279:17607–17616PubMedCrossRefGoogle Scholar
  12. Folk JE (1983) Mechanism and basis for specificity of transglutaminase-catalyzed ε-(γ-glutamyl)lysine bond formation. Adv Enzymol Relat Areas Mol Biol 54:1–56PubMedGoogle Scholar
  13. Gentile V, Porta R, Chiosi E, Spina A, Caputo I, Valente F, Pezone R, Davies PJA, Illiano G (1997) Tissue transglutaminase and adenylate cyclase interactions in Balb-C 3T3 fibroblast membranes. Biochim Biophys Acta 1357:115–122PubMedCrossRefGoogle Scholar
  14. Gentile V, Sepe C, Calvani M, Melone MAB, Cotrufo R, Cooper AJL, Blass JP, Peluso G (1998) Tissue transglutaminase-catalyzed formation of high-molecular-weight aggregates in vitro is favored with long polyglutamine domains: a possible mechanism contributing to CAG-triplet diseases. Arch Biochem Biophys 352:314–321PubMedCrossRefGoogle Scholar
  15. Grierson AJ, Johnson GV, Miller CC (2001) Three different human τ isoforms and rat neurofilament light, middle and heavy chain proteins are cellular substrates for transglutaminase. Neurosci Lett 298:9–12PubMedCrossRefGoogle Scholar
  16. Griffith OW, Larsson A, Meister A (1997) Inhibition of γ-glutamylcysteine synthetase by cystamine: an approach to a therapy of 5-oxoprolinuria (pyroglutamic aciduria). Biochem Biophys Res Commun 79:919–925CrossRefGoogle Scholar
  17. Hadjivassiliou M, Aeschlimann P, Strigun A, Sanders DS, Woodroofe N, Aeschlimann D (2008) Autoantibodies in gluten ataxia recognize a novel neuronal transglutaminase. Ann Neurol 64:332–343PubMedCrossRefGoogle Scholar
  18. Hartley DM, Zhao C, Speier AC, Woodard GA, Li S, Li Z, Walz T (2008) Transglutaminase induces protofibril-like amyloid β-protein assemblies that are protease-resistant and inhibit long-term potentiation. J Biol Chem 283:16790–16800PubMedCrossRefGoogle Scholar
  19. Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M, Sato Y, Saito Y (2003) A novel function of tissue-type transglutaminase: protein disulfide isomerase. Biochem J 373:793–803PubMedCrossRefGoogle Scholar
  20. Igarashi S, Koide R, Shimohata T, Yamada M, Hayashi Y, Takano H, Date H, Oyake M, Sato A, Egawa S, Ikeuchi T, Tanaka H, Nakano R, Tanaka K, Hozumi I, Inuzuka T, Takahashi H, Tsuji S (1998) Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch. Nat Genet 18:111–117PubMedCrossRefGoogle Scholar
  21. Iuchi S, Hoffner G, Verbeke P, Djian P, Green H (2003) Oligomeric and polymeric aggregates formed by proteins containing expanded polyglutamine. Proc Natl Acad Sci USA 100:2409–2414PubMedCrossRefGoogle Scholar
  22. Jeitner TM, Matson WR, Folk JE, Blass JP, Cooper AJL (2008) Increased levels of γ-glutamylamines in Huntington disease CSF. J Neurochem 106:37–44PubMedCrossRefGoogle Scholar
  23. Junn E, Ronchetti RD, Quezado MM, Kim SY, Mouradian MM (2003) Tissue transglutaminase-induced aggregation of α-synuclein: Implications for Lewy body formation in Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 100:2047–2052PubMedCrossRefGoogle Scholar
  24. Kahlem P, Green H, Djian P (1998) Transglutaminase action imitates Huntington’s disease: selective polymerization of huntingtin containing expanded polyglutamine. Mol Cell 1:595–601PubMedCrossRefGoogle Scholar
  25. Karpuj MV, Becher MW, Springer JE, Chabas D, Youssef S, Pedotti R, Mitchell D, Steinman L (2002) Prolonged survival and decreased abnormal movements in transgenic model of Huntington disease, with administration of the transglutaminase inhibitor cystamine. Nat Med 8:143–149PubMedCrossRefGoogle Scholar
  26. Karpuj MV, Garren H, Slunt H, Price DL, Gusella J, Becher MW, Steinman L (1999) Transglutaminase aggregates huntingtin into nonamyloidogenic polymers, and its enzymatic activity increases in Huntington’s disease brain nuclei. Proc Natl Acad Sci USA 96:7388–7393PubMedCrossRefGoogle Scholar
  27. Kim CY, Quarsten H, Bergseng E, Khosla C, Sollid LM (2004) Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc Natl Acad Sci USA 101:4175–4179PubMedCrossRefGoogle Scholar
  28. Kim S-Y, Grant P, Lee JHC, Pant HC, Steinert PM (1999) Differential expression of multiple transglutaminases in human brain. Increased expression and cross-linking by transglutaminase 1 and 2 in Alzheimer’s disease. J Biol Chem 274:30715–30721PubMedCrossRefGoogle Scholar
  29. Krasnikov BF, Kim SY, McConoughey SJ, Ryu H, Xu H, Stavrovskaya I, Iismaa SE, Mearns BM, Ratan RR, Blass JP, Gibson GE, Cooper AJ (2005) Transglutaminase activity is present in highly purified nonsynaptosomal mouse brain and liver mitochondria. Biochemistry 44:7830–7843PubMedCrossRefGoogle Scholar
  30. Lahav J, Karniel E, Bagoly Z, Sheptovitsky V, Dardik R, Inbal A (2009) Coagulation factor XIII serves as protein disulfide isomerase. Thromb Haemost 101:840–844PubMedGoogle Scholar
  31. Lai T-S, Liu Y, Weidong L, Greenberg C (2007) Identification of two GTP independent alternatively spliced forms of tissue transglutaminase in human leukocytes, vascular smooth muscle, and endothelial cells. FASEB J 21:4131–4134PubMedCrossRefGoogle Scholar
  32. Lesort M, Lee M, Tucholski J, Johnson GVW (2003) Cystamine inhibits caspase activity. Implications for the treatment of polyglutamine disorders. J Biol Chem 278:3825–3830PubMedCrossRefGoogle Scholar
  33. Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Mol Cell Biol 4:140–156CrossRefGoogle Scholar
  34. Mastroberardino PG, Iannicola C, Nardacci R, Bernassola F, De Laurenzi V, Melino G, Moreno S, Pavone F, Oliviero S, Fesus L, Piacentini M (2002) ‘Tissue’ transglutaminase ablation reduces neuronal death and prolongs survival in a mouse model of Huntington’s disease. Cell Death Differ 9:873–880PubMedCrossRefGoogle Scholar
  35. McConoughey SJ, Basso M, Niatsetskaya ZV, Sleiman SF, Smirnova NA, Langley BC, Mahishi L, Cooper AJ, Antonyak MA, Cerione RA, Li B, Starkov A, Chaturvedi RK, Beal MF, Coppola G, Geschwind DH, Ryu H, Xia L, Iismaa SE, Pallos J, Pasternack R, Hils M, Fan J, Raymond LA, Marsh JL, Thompson LM, Ratan RR (2010) Inhibition of transglutaminase 2 mitigates transcriptional dysregulation in models of Huntington disease. EMBO Mol Med 2:349–370PubMedCrossRefGoogle Scholar
  36. Mian S, El Alaoui S, Lawry J, Gentile V, Davies PJA, Griffin M (1995) The importance of the GTP binding protein tissue transglutaminase in the regulation of cell cycle progression. FEBS Lett 370:27–31PubMedCrossRefGoogle Scholar
  37. Miller ML, Johnson GV (1995) Transglutaminase cross-linking of the tau protein. J Neurochem 65:1760–1770PubMedCrossRefGoogle Scholar
  38. Monsonego A, Shani Y, Friedmann I, Paas Y, Eizenberg O, Schwartz M (1997) Expression of GTP-dependent and GTP-independent tissue-type transglutaminase in cytokine-treated rat brain astrocytes. J Biol Chem 272:3724–3732PubMedCrossRefGoogle Scholar
  39. Nakaoka H, Perez DM, Baek KJ, Das T, Husain A, Misono K, Im MJ, Graham RM (1994) Gh: a GTP-binding protein with transglutaminase activity and receptor signalling function. Science 264:1593–1596PubMedCrossRefGoogle Scholar
  40. Nanda N, Iismaa SE, Owens WA, Husain A, Mackay F, Graham RM (2001) Targeted inactivation of Gh/tissue transglutaminase II. J Biol Chem 276:20673–20678PubMedCrossRefGoogle Scholar
  41. Piacentini M, Martinet N, Beninati S, Folk JE (1988) Free and protein conjugated-polyamines in mouse epidermal cells. Effect of high calcium and retinoic acid. J Biol Chem 263:3790–3794PubMedGoogle Scholar
  42. Schmid AW, Condemi E, Tuchscherer G, Chiappe D, Mutter M, Vogel H, Moniatte M, Tsybin YO (2011) Tissue transglutaminase-mediated glutamine deamidation of β-amyloid peptide increases peptide solubility, whereas enzymatic cross-linking and peptide fragmentation may serve as molecular triggers for rapid peptide aggregation. J Biol Chem 286:12172–12188PubMedCrossRefGoogle Scholar
  43. Selkoe DJ, Abraham C, Ihara Y (1982) Alzheimer’s disease: insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea. Proc Natl Acad Sci USA 79:6070–6074PubMedCrossRefGoogle Scholar
  44. Singer SM, Zainelli GM, Norlund MA, Lee JM, Muma NA (2002) Transglutaminase bonds in neurofibrillary tangles and paired helical filament tau early in Alzheimer’s disease. Neurochem Int 40:17–30PubMedCrossRefGoogle Scholar
  45. Smethurst PA, Griffin M (1996) Measurement of tissue transglutaminase activity in a permeabilized cell system: its regulation by calcium and nucleotides. Biochem J 313:803–808PubMedGoogle Scholar
  46. Tee AEL, Marshall GM, Liu PY, Xu N, Haber M, Norris MD, Iismaa SE, Liu T (2010) Opposing effects of two tissue transglutaminase protein isoforms in neuroblastoma cell differentiation. J Biol Chem 285:3561–3567PubMedCrossRefGoogle Scholar
  47. Thomazy V, Fesus L (1989) Differential distribution of tissue transglutaminase in human cells: An immunohistochemical study. Cell Tissue Res 255:215–224PubMedCrossRefGoogle Scholar
  48. Verhoef LGGC, Lindsten K, Masucci MG, Dantuma NP (2002) Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum Mol Genet 11:2689–2700PubMedCrossRefGoogle Scholar
  49. Wilhelmus MM, Grunberg SC, Bol JG, van Dam AM, Hoozemans JJ, Rozenmuller AJ, Drukarch B (2009) Transglutaminases and transglutaminase-catalyzed cross-links colocalize with the pathological lesions in Alzheimer’s disease brain. Brain Pathol 19:612–622PubMedCrossRefGoogle Scholar
  50. Zemaitaitis MO, Kim SY, Halverson RA, Troncoso JC, Lee JM, Muma NA (2003) Transglutaminase activity, protein, and mRNA expression are increased in progressive supranuclear palsy. J Neuropathol Exp Neurol 62:173–184PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Antonio Martin
    • 1
  • Alessandro Giuliano
    • 1
  • Domenico Collaro
    • 1
  • Giulia De Vivo
    • 1
  • Carla Sedia
    • 1
  • Enrica Serretiello
    • 1
  • Vittorio Gentile
    • 1
  1. 1.Department of Biochemistry and BiophysicsSecond University of NaplesNaplesItaly

Personalised recommendations