Amino Acids

, Volume 42, Issue 2–3, pp 1025–1035

Polyamines and transglutaminase activity are involved in compatible and self-incompatible pollination of Citrus grandis

  • Alessandra Gentile
  • Fabiana Antognoni
  • Rosa Anna Iorio
  • Gaetano Distefano
  • Giuseppina Las Casas
  • Stefano La Malfa
  • Donatella Serafini-Fracassini
  • Stefano Del Duca
Original Article

Abstract

Pollination of pummelo (Citrus grandis L. Osbeck) pistils has been studied in planta by adding compatible and self-incompatible (SI) pollen to the stigma surface. The pollen germination has been monitored inside the pistil by fluorescent microscopy showing SI altered morphologies with irregular depositions of callose in the tube walls, and heavy callose depositions in enlarged tips. The polyamine (PA) content as free, perchloric acid (PCA)-soluble and -insoluble fractions and transglutaminase (TGase) activity have been analyzed in order to deepen their possible involvement in the progamic phase of plant reproduction. The conjugated PAs in PCA-soluble fraction were definitely higher than the free and the PCA-insoluble forms, in both compatible and SI pollinated pistils. In pistils, pollination caused an early decrease of free PAs and increase of the bound forms. The SI pollination, showed highest values of PCA-soluble and -insoluble PAs with a maximum in concomitance with the pollen tube arrest. As TGase mediates some of the effects of PAs by covalently binding them to proteins, its activity, never checked before in Citrus, was examined with two different assays. In addition, the presence of glutamyl-PAs confirmed the enzyme assay data and excluded the possibility of a misinterpretation. The SI pollination caused an increase in TGase activity, whereas the compatible pollination caused its decrease. Similarly to bound PAs, the glutamyl-PAs and the enzyme activity peaked in the SI pollinated pistils in concomitance with the observed block of the pollen tube growth, suggesting an involvement of TGase in SI response.

Keywords

Citrus Pollen Polyamines Reproduction Self-incompatibility Transglutaminase 

Abbreviations

BCA

Bicinchoninic acid

BSA

Bovine serum albumin

DMC

N′,N′-dimethyl casein

DTT

Dithiothreitol

EDTA

Ethylene diamine tetraacetic acid

EGTA

Ethylene glycol tetraacetic acid

GSI

Gametophytic self-incompatible

HPLC

High-performance liquid chromatography

PAs

Polyamines

PBS

Phosphate-buffered saline

PMSF

Phenyl methyl sulfonyl fluoride

PCA

Perchloric acid

PCD

Programmed cell death

PU

Putrescine

SI

Self-incompatible

SD

Spermidine

SM

Spermine

SSI

Sporophytic self-incompatible

TCA

Trichloroacetic acid

TGase

Transglutaminase

tTGase

Tissue transglutaminase

UP

Unpollinated

References

  1. Antognoni F, Bagni N (2008) Bis(guanylhydrazones) negatively affect in vitro germination of kiwifruit pollen and alter the endogenous polyamine pool. Plant Biol 10:334–341PubMedCrossRefGoogle Scholar
  2. Bagni N, Adamo P, Serafini-Fracassini D, Villanueva VR (1981) RNA, Proteins and polyamines during tube growth in germinating apple pollen. Plant Physiol 68:727–730PubMedCrossRefGoogle Scholar
  3. Beninati S, Bergamini CM, Piacentini M (2009) An overview of the first 50 years of transglutaminase research. Amino Acids 36:591–598PubMedCrossRefGoogle Scholar
  4. Biasi R, Falasca G, Speranza A, De Stradis A, Scoccianti V, Franceschetti M, Bagni N, Altamura MM (2001) Biochemical and ultrastructural features related to male sterility in the dioecious species Actinidia deliciosa. Plant Physiol Biochem 39:395–406CrossRefGoogle Scholar
  5. Bokern M, Witte L, Wray V, Nimtz M, Meurer-Grimes B (1995) Trisubstituted hydroxycinnamic acid Spds from Quercus dentata pollen. Phytochem 39:1371–1375CrossRefGoogle Scholar
  6. Brown RE, Jarvis KL, Hyland KJ (1989) Protein measurement using bicinchoninic acid: elimination of interfering substances. Anal Biochem 180:136–139PubMedCrossRefGoogle Scholar
  7. Cai G, Romagnoli S, Moscatelli A, Ovidi E, Gambellini G, Tiezzi A, Cresti M (1997) Identification and characterization of a novel microtubule-based motor associated with membranous organelles in tobacco pollen tubes. Plant Cell 12:1719–1736CrossRefGoogle Scholar
  8. Capell T, Claparols I, Del Duca S, Bassie L, Miro B, Rodriguez-Montesinos J, Christou P, Serafini-Fracassini D (2004) Producing transglutaminases by molecular farming in plants: minireview article. Amino Acids 26:419–423PubMedCrossRefGoogle Scholar
  9. Cheung A, Wu H (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572PubMedCrossRefGoogle Scholar
  10. Chibi F, Matilla A, Angosto T, Garrido D (1994) Changes in polyamine synthesis during anther development and pollen germination in tobacco (Nicotiana tabacum). Physiol Plant 92:61–68CrossRefGoogle Scholar
  11. Del Duca S, Bregoli AM, Bergamini C, Serafini-Fracassini D (1997) Transglutaminase-catalyzed modification of cytoskeletal proteins by polyamines during the germination of Malus domestica pollen. Sex Plant Reprod 10:89–95CrossRefGoogle Scholar
  12. Del Duca S, Serafini-Fracassini D, Bonner PLR, Cresti M, Cai G (2009) Effects of post-translational modifications catalyzed by pollen transglutaminase on the functional properties of microtubules and actin filaments. Biochem J 418:651–664PubMedCrossRefGoogle Scholar
  13. Del Duca S, Cai G, Di Sandro A, Serafini-Fracassini D (2010) Compatible and self-incompatible pollination in Pyrus communis displays different polyamine levels and transglutaminase activity. Amino Acids 38:659–667PubMedCrossRefGoogle Scholar
  14. Della Mea M, Serafini-Fracassini D, Del Duca S (2007a) Programmed cell death: similarities and differences in animals and plants. A flower paradigm. Amino Acids 33:395–404PubMedCrossRefGoogle Scholar
  15. Della Mea M, De Filippis F, Genovesi V, Serafini-Fracassini D, Del Duca S (2007b) The acropetal wave of developmental cell death (DCD) of Nicotiana tabacum corolla is preceded by activation of transglutaminase in different cell compartments. Plant Physiol 144:1–13CrossRefGoogle Scholar
  16. Deng ZN, La Malfa S, Xie YM, Xiong XX, Gentile A (2007) Identification and evaluation of chloroplast uni- and trinucleotide sequence repeats in citrus. Scientia Hort 111:186–192CrossRefGoogle Scholar
  17. Di Sandro A, Del Duca S, Verderio E, Hargreaves A, Scarpellini A, Cai G, Cresti M, Faleri C, Iorio RA, Hirose S, Furutani Y, Coutts IGC, Griffin M, Bonner PLR, Serafini-Fracassini D (2010) An extracellular transglutaminase is required for apple pollen tube growth. Biochem J 429:261–271PubMedCrossRefGoogle Scholar
  18. Distefano G, Caruso M, La Malfa S, Gentile A, Tribulato E (2009) Histological and molecular analysis of pollen–pistil interaction in Clementine. Plant Cell Rep 28:1439–1451PubMedCrossRefGoogle Scholar
  19. Fellenberg C, Böttcher C, Vogt T (2009) Phenylpropanoid polyamine conjugate biosynthesis in Arabidopsis thaliana flower buds. Phytochem 70:1392–1400CrossRefGoogle Scholar
  20. Folk JE, Park MH, Chung SI, Schrode J, Lester EP, Cooper HL (1980) Polyamines as physiological substrates for transglutaminases. J Biol Chem 255:3695–3700PubMedGoogle Scholar
  21. Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD et al (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446PubMedCrossRefGoogle Scholar
  22. Galston AW, Kaur-Sawhney R (1990) Polyamines in plant physiology. Plant Physiol 94:406–410PubMedCrossRefGoogle Scholar
  23. Grienenberger E, Besseau S, Geoffroy P, Debayle D, Heintz D, Lapierre C, Pollet B, Heitz T, Legrand M (2009) A BAHD acyltransferase is expressed in the tapetum of Arabidopsis anthers and is involved in the synthesis of hydroxycinnamoyl spermidines. Plant J 58:246–259PubMedCrossRefGoogle Scholar
  24. Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396PubMedCrossRefGoogle Scholar
  25. Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RAJ (1998) The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci USA 95:11140–11145PubMedCrossRefGoogle Scholar
  26. Lam TBT, Iiyama K, Stone B (1992) Cinnamic acid bridges between cell wall polymers in wheat and Phalaris internodes. Phytochem 31:1179–1183CrossRefGoogle Scholar
  27. Lilley GR, Skill J, Griffin M, Bonner PL (1998) Detection of Ca2+-dependent transglutaminase activity in root and leaf tissue of monocotyledonous and dicotyledonous plants. Plant Physiol 117:1115–1123PubMedCrossRefGoogle Scholar
  28. Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156PubMedCrossRefGoogle Scholar
  29. Martin-Tanguy J, Perdrizet E, Prevost J, Martin C (1982) The distribution of hydroxycinnamic acid amides in fertile and cytoplasmic male sterile lines of maize. Phytochem 21:1939–1945CrossRefGoogle Scholar
  30. McClure BA, Franklin-Tong V (2006) Gametophytic self-incompatibility: understanding the cellular mechanisms involved in “self” pollen tube inhibition. Planta 224:233–245PubMedCrossRefGoogle Scholar
  31. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410PubMedCrossRefGoogle Scholar
  32. Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395PubMedCrossRefGoogle Scholar
  33. Pohjanpelto P, Virtanen I, Holtta E (1981) Polyamine starvation causes disappearance of actin filaments and microtubules in polyamine-auxotrophic cells. Nature 293:475–477PubMedCrossRefGoogle Scholar
  34. Potocký M, Jones MA, Bezvoda R, Smirnoff N, Žárský V (2007) Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174:742–751PubMedCrossRefGoogle Scholar
  35. Poulter NS, Vatovec S, Franklin-Tong VE (2008) Microtubules are a target for self-incompatibility signaling in Papaver pollen. Plant Physiol 146:1358–1367PubMedCrossRefGoogle Scholar
  36. Scaramagli S, Bueno M, Torrigiani P, Altamura MM, Capitani F, Bagni N (1995) Morphogenesis in cultured thin layers and pith explants of tobacco. II. Early hormone modulated polyamine biosynthesis. J Plant Physiol 147:113–117CrossRefGoogle Scholar
  37. Serafini-Fracassini D, Della Mea M, Tasco G, Casadio R, Del Duca S (2009) Plant and animal transglutaminases: do similar functions imply similar structures? Amino Acids 36:643–657PubMedCrossRefGoogle Scholar
  38. Shi J, Fu XZ, Peng T, Huang XS, Fan QJ, Liu JH (2010) Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiol 30:914–922PubMedCrossRefGoogle Scholar
  39. Siepaio MP, Meunier JF (1995) Diamine oxidase and transglutaminase activities in white lupin seedlings with respect to crosslinking of proteins. J Agric Food Chem 43:1151–1156CrossRefGoogle Scholar
  40. Soost RK (1965) Incompatibility alleles in the genus Citrus. Proc Am Soc Hortic Sci 87:176–180Google Scholar
  41. Speranza A, Calzoni GL, Bagni N (1984) Evidence for a polyamine-mediated control of ribonuclease activity in germinating pollen. Physiol Veg 22:323–331Google Scholar
  42. Thomas SG, Franklin-Tong VE (2004) Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429:305–309PubMedCrossRefGoogle Scholar
  43. Thomas SG, Huang S, Li S, Staiger CJ, Franklin-Tong VE (2006) Actin depolymerization is sufficient to induce programmed cell death in self-incompatible pollen. J Cell Biol 174:221–229PubMedCrossRefGoogle Scholar
  44. Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Sci 151:59–66CrossRefGoogle Scholar
  45. Waffenschmidt S, Kusch T, Woessner JP (1999) A transglutaminase immunologically related to tissue transglutaminase catalyses cross-linking of cell wall proteins in Chlamydomonas reinhardtii. Plant Physiol 121:1003–1015PubMedCrossRefGoogle Scholar
  46. Wang CL, Wu J, Xu GH, Gao YB, Chen G, Wu JY, Wu HQ, Zhang SL (2010) S-RNase disrupts tip-localized reactive oxygen species and induces nuclear DNA degradation in incompatible pollen tubes of Pyrus pyrifolia. J Cell Sci 123:4301–4309PubMedCrossRefGoogle Scholar
  47. Wheeler MJ, de Graaf BH, Hadjiosif N, Perry RM, Poulter NS, Osman K, Vatovec S, Harper A, Franklin FC, Franklin-Tong VE (2009) Identification of the pollen self-incompatibility determinant in Papaver rhoeas. Nature 459:992–995PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Alessandra Gentile
    • 1
  • Fabiana Antognoni
    • 2
  • Rosa Anna Iorio
    • 2
  • Gaetano Distefano
    • 1
  • Giuseppina Las Casas
    • 1
  • Stefano La Malfa
    • 1
  • Donatella Serafini-Fracassini
    • 2
  • Stefano Del Duca
    • 2
  1. 1.Dipartimento di Scienze delle Produzioni Agrarie e AlimentariUniversità di CataniaCataniaItaly
  2. 2.Dipartimento di Biologia e.s.Università degli Studi di BolognaBolognaItaly

Personalised recommendations