Advertisement

Amino Acids

, Volume 42, Issue 2–3, pp 813–830 | Cite as

Profiling the aminopropyltransferases in plants: their structure, expression and manipulation

  • Lin Shao
  • Rajtilak Majumdar
  • Subhash C. MinochaEmail author
Minireview Article

Abstract

Polyamines are organic polycations that are involved in a wide range of cellular activities related to growth, development, and stress response in plants. Higher polyamines spermidine and spermine are synthesized in plants and animals by a class of enzymes called aminopropyltransferases that transfer aminopropyl moieties (derived from decarboxylated S-adenosylmethionine) to putrescine and spermidine to produce spermidine and spermine, respectively. The higher polyamines show a much tighter homeostatic regulation of their metabolism than the diamine putrescine in most plants; therefore, the aminopropyltransferases are of high significance. We present here a comprehensive summary of the current literature on plant aminopropyltransferases including their distribution, biochemical properties, genomic organization, pattern of expression during development, and their responses to abiotic stresses, and manipulation of their cellular activity through chemical inhibitors, mutations, and genetic engineering. This minireview complements several recent reviews on the overall biosynthetic pathway of polyamines and their physiological roles in plants and animals. It is concluded that (1) plants often have two copies of the common aminopropyltransferase genes which exhibit redundancy of function, (2) their genomic organization is highly conserved, (3) direct enzyme activity data on biochemical properties of these enzymes are scant, (4) often there is a poor correlation among transcripts, enzyme activity and cellular contents of the respective polyamine, and (5) transgenic work mostly confirms the tight regulation of cellular contents of spermidine and spermine. An understanding of expression and regulation of aminopropyltransferases at the metabolic level will help us in effective use of genetic engineering approaches for the improvement in nutritional value and stress responses of plants.

Keywords

Polyamines Spermidine synthase Spermine synthase Transgenic manipulation Genetic manipulation Putrescine 

Abbreviations

Agm

Agmatine

ADC

Arginine decarboxylase

APT

Aminopropyltransferase

Cad

Cadaverine

CHA

Cyclohexylamine

dcSAM

Decarboxylated S-adenosylmethionine

DCHA

Dicyclohexylamine

MTA

5′-methylthioadenosine

ODC

Ornithine decarboxylase

ORF

Open reading frame

PA

Polyamine

Put

Putrescine

SAM

S-adenosylmethionine

SAMDC

S-adenosylmethionine decarboxylase

Spd

Spermidine

SPDS

Spermidine synthase

Spm

Spermine

SPMS

Spermine synthase

tSpm

Thermospermine

tSPMS

Thermospermine synthase

UTR

Untranslated region

WT

Wild type

References

  1. Alabadi D, Carbonell J (1999) Differential expression of two spermidine synthase genes during early fruit development and in vegetative tissues of pea. Plant Mol Biol 39:933–943PubMedCrossRefGoogle Scholar
  2. Alcázar R, Cuevas JC, Patron M, Altabella T, Tiburcio AF (2006) Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol Plant 128:448–455CrossRefGoogle Scholar
  3. Alcázar R, Bitrián M, Bartels D, Koncz C, Altabella T, Tiburcio AF (2011) Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Cratersotigma plantagineum. Plant Signal Behav 6:243–250PubMedCrossRefGoogle Scholar
  4. Altamura MM, Capitani F, Cerehia R, Falasca G, Bagni N (1993) Cytological events induced by the inhibition of polyamine biosynthesis in thin cell layers of tobacco. Protoplasma 175:9–16CrossRefGoogle Scholar
  5. Bagni N, Ruiz-Carrasco K, Franceschetti M, Fornalè S, Fornasiero RB, Tassoni A (2006) Polyamine metabolism and biosynthetic gene expression in Arabidopsis thaliana under salt stress. Plant Physiol Biochem 44:776–786PubMedCrossRefGoogle Scholar
  6. Bassie L, Noury M, Lepri O, Lahaye T, Christou P, Capell T (2000) Promoter strength influences polyamine metabolism and morphogenic capacity in transgenic rice tissues expressing the oat adc cDNA constitutively. Transgenic Res 9:33–42PubMedCrossRefGoogle Scholar
  7. Bhatnagar P, Glasheen BM, Bains SK, Long SL, Minocha R, Walter C, Minocha SC (2001) Transgenic manipulation of the metabolism of polyamines in poplar cells. Plant Physiol 125:2139–2153PubMedCrossRefGoogle Scholar
  8. Bhatnagar P, Minocha R, Minocha SC (2002) Genetic manipulation of the metabolism of polyamines in poplar cells. The regulation of putrescine catabolism. Plant Physiol 128:1455–1469PubMedCrossRefGoogle Scholar
  9. Cacciapuoti G, Porcelli M, Moretti MA, Sorrentino F, Concilio L, Zappia V, Liu ZJ, Tempel W, Schubot F, Rose JP, Wang BC, Brereton PS, Jenney FE, Adams MW (2007) The first agmatine/cadaverine aminopropyl transferase: biochemical and structural characterization of an enzyme involved in polyamine biosynthesis in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 189:6057–6067PubMedCrossRefGoogle Scholar
  10. Chattopadhyay MK, Chen W, Poy G, Cam M, Stiles D, Tabor H (2009a) Microarray studies on the genes responsive to the addition of spermidine or spermine to a Saccharomyces cerevisiae spermidine synthase mutant. Yeast 26:531–544PubMedCrossRefGoogle Scholar
  11. Chattopadhyay MK, Tabor CW, Tabor H (2009b) Polyamines are not required for aerobic growth of Escherichia coli: preparation of a strain with deletions in all of the genes for polyamine biosynthesis. J Bacterol 191:5549–5552CrossRefGoogle Scholar
  12. Clay NK, Nelson T (2005) Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport. Plant Physiol 138:767–777PubMedCrossRefGoogle Scholar
  13. Cohen SS (1998) A guide to the polyamines. Oxford University Press, New YorkGoogle Scholar
  14. Deeb F, van der Weele CM, Wolniak SM (2010) Spermidine is a morphogenetic determinant for cell fate specification in the male gametophyte of the water fern Marsilea vestita. Plant Cell 22:3678–3691PubMedCrossRefGoogle Scholar
  15. Efrose RC, Flemetakis E, Sfichi L, Stedel C, Kouri ED, Udvardi MK, Kotzabasis K, Katinakis P (2008) Characterization of spermidine and spermine synthases in Lotus japonicus: induction and spatial organization of polyamine biosynthesis in nitrogen fixing nodules. Planta 228:37–49PubMedCrossRefGoogle Scholar
  16. Enomoto K, Nagasaki T, Yamauchi A, Onoda J, Sakai K, Yoshida T, Maekawa K, Kinoshita Y, Nishino I, Kikuoka S, Fukunaga T, Kawamoto K, Numata Y, Takemoto H, Nagata K (2006) Development of high-throughput spermidine synthase activity assay using homogeneous time-resolved fluorescence. Anal Biochem 351:229–240PubMedCrossRefGoogle Scholar
  17. Falasca G, Franceschetti M, Bagni N, Altamura MM, Biasi R (2010) Polyamine biosynthesis and control of the development of functional pollen in kiwifruit. Plant Physiol Biochem 48:565–573PubMedCrossRefGoogle Scholar
  18. Franceschetti M, Fornalè S, Tassonia A, Zuccherelli K, Mayer MJ, Bagni N (2004) Effects of spermidine synthase overexpression on polyamine biosynthetic pathway in tobacco plants. J Plant Physiol 161:989–1001PubMedCrossRefGoogle Scholar
  19. Gárriz A, Dalmasso MC, Marina M, Rivas EI, Ruiz OA, Pieckenstain FL (2003) Polyamine metabolism during the germination of Sclerotinia sclerotiorum ascospores and its relation with host infection. New Phytol 161:847–854CrossRefGoogle Scholar
  20. Gomez-Jimenez MC, Paredes MA, Gallardo M, Fernandez-Garcia N, Olmos E, Sanchez-Calle IM (2010) Tissue-specific expression of olive S-adenosyl methionine decarboxylase and spermidine synthase genes and polyamine metabolism during flower opening and early fruit development. Planta 232:629–647PubMedCrossRefGoogle Scholar
  21. Hamana K, Hamana H, Shinozawa T, Niitsu M, Samejima K, Itoh T (1999) Polyamines of the thermophilic eubacteria belonging to the genera Aquifex, Thermodesulfobacterium, Thermus and Meiothermus, and thethermophilic archaebacteria belonging to Sulfurisphaera, Sulfophobococcus, Stetteria, Ther-mocladium, Pyrococcus, Thermococcus, Methanopyrus and Methanothermus. Microbes 97:117–130Google Scholar
  22. Hamasaki-Katagiri N, Tabor CW, Tabor H (1997) Spermidine biosynthesis in Saccharomyces cerevisae: polyamine requirement of a null mutant of the SPE3 gene (spermidine synthase). Gene 187:35–43PubMedCrossRefGoogle Scholar
  23. Hamasaki-Katagiri N, Katagiri Y, Tabor CW, Tabor H (1998) Spermine is not essential for growth of Saccharomyces cerevisiae: identification of the SPE4 gene (spermine synthase) and characterization of a spe4 deletion mutant. Gene 210:195–201PubMedCrossRefGoogle Scholar
  24. Handa AK, Mattoo AK (2010) Differential and functional interactions emphasize the multiple roles of polyamines in plants. Plant Physiol Biochem 48:540–546PubMedCrossRefGoogle Scholar
  25. Hanzawa Y, Takahashi T, Michael AJ, Burtin D, Long D, Pineiro M, Coupland G, Komeda Y (2000) ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J 19:4248–4256PubMedCrossRefGoogle Scholar
  26. Hanzawa Y, Imai A, Michael AJ, Komeda Y, Takahashi T (2002) Characterization of the spermidine synthase-related gene family in Arabidopsis thaliana. FEBS Lett 527:176–180PubMedCrossRefGoogle Scholar
  27. He L, Ban Y, Inoue H, Matsuda N, Liu J, Moriguchi T (2008a) Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. Phytochemistry 69:2133–2141PubMedCrossRefGoogle Scholar
  28. He L, Ban Y, Miyata S, Kitashiba H, Moriguchi T (2008b) Apple aminopropyl transferase, MdACL5 interacts with putative elongation factor 1-α and S-adenosylmethionine synthase revealed. Biochem Biophys Res Commun 366:162–167PubMedCrossRefGoogle Scholar
  29. Hewezi T, Howe PJ, Maier TR, Hussey RS, Mitchum MG, Davis EL, Baum TJ (2010) Arabidopsis spermidine synthase is targeted by an effector protein of the cyst nematode Heterodera schachtii. Plant Physiol 152:968–984PubMedCrossRefGoogle Scholar
  30. Hibasami H, Pegg AE (1978) Rapid and convenient method for the assay of aminopropyltransferases. Biochem J 169:709–712PubMedGoogle Scholar
  31. Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51PubMedCrossRefGoogle Scholar
  32. Ikeguchi Y, Bewley MC, Pegg AE (2006) Aminopropyltransferases: function, structure and genetics. J Biochem 139:1–9PubMedCrossRefGoogle Scholar
  33. Imai A, Akiyama T, Kato T, Sato S, Tabata S, Yamamoto KT, Takahashi T (2004a) Spermine is not essential for survival of Arabidopsis. FEBS Lett 556:148–152PubMedCrossRefGoogle Scholar
  34. Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Komeda Y, Takahashi T (2004b) Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol 135:1565–1573PubMedCrossRefGoogle Scholar
  35. Jiménez-Bremont JF, Ruiz OA, Rodríguez-Kessler M (2007) Modulation of spermidine and spermine levels in maize seedlings subjected to long-term salt stress. Plant Physiol Biochem 45:812–821PubMedCrossRefGoogle Scholar
  36. Kakehi J, Kuwashiro Y, Niitsu M, Takahashi T (2008) Thermospermine is required for stem elongation in Arabidopsis thaliana. Plant Cell Physiol 49:1342–1349PubMedCrossRefGoogle Scholar
  37. Kakehi J, Kuwashiro Y, Motose H, Igarashi K, Takahashi T (2010) Norspermine substitutes for thermospermine in the control of stem elongation in Arabidopsis thaliana. FEBS Lett 584:3042–3046PubMedCrossRefGoogle Scholar
  38. Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722PubMedCrossRefGoogle Scholar
  39. Kasukabe Y, He L, Watakabe Y, Otani M, Shimada T, Tachibana S (2006) Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnol 23:75–83CrossRefGoogle Scholar
  40. Kingsbury J, Yang Z, Ganous T, Cox G, McCusker J (2004) Novel chimeric spermidine synthase-saccharopine dehydrogenase gene (SPE3-LYS9) in the human pathogen Cryptococcus neoformans. Eukaryotic Cell 3:752–763PubMedCrossRefGoogle Scholar
  41. Kitashiba H, Hao YJ, Honda C, Moriguchi T (2005) Two types of spermine synthase gene: MdACL5 and MdSPMS are differentially involved in apple fruit development and cell growth. Gene 361:101–111PubMedCrossRefGoogle Scholar
  42. Knott JM, Römer P, Sumper M (2007) Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Lett 581:3081–3086PubMedCrossRefGoogle Scholar
  43. Kröger N, Deutzmann R, Bergsdorf C, Sumper M (2000) Species-specific polyamines from diatoms control silica morphology. Proc Natl Acad Sci USA 97:14133–14138PubMedCrossRefGoogle Scholar
  44. Lee S-H, Cho Y-D (1997) A new assay method for spermidine and spermine synthases using antibody against MTA. J Biochem Mol Biol 30:443–447Google Scholar
  45. Mackintosh CA, Walters DR (1997) Growth and polyamine metabolism in Pyrenophora avenae exposed to cyclohexylamine and norspermidine. Amino Acids 13:347–354CrossRefGoogle Scholar
  46. Mattoo AK, Minocha SC, Minocha R, Handa AK (2010) Polyamines and cellular metabolism in plants: transgenic approaches reveal different responses to diamine putrescine versus higher polyamines spermidine and spermine. Amino Acids 38:405–413PubMedCrossRefGoogle Scholar
  47. Meskaoui AE, Trembaly FM (2009) Effects of exogenous polyamines and inhibitors of polyamine biosynthesis on endogenous free polyamine contents and the maturation of white spruce somatic embryos. African J Biotechnol 8:6807–6816Google Scholar
  48. Minguet EG, Vera-Sirera F, Marina A, Carbonell J, Blázquez MA (2008) Evolutionary diversification in polyamine biosynthesis. Mol Biol Evol 25:2119–2128PubMedCrossRefGoogle Scholar
  49. Minocha R, Long S, Magill AH, Aber J, McDowell WH (2000) Foliar free polyamine and inorganic ion content in relation to soil and soil solution chemistry in two fertilized forest stands at the Harvard Forest, Massachusetts. Plant Soil 222:119–137CrossRefGoogle Scholar
  50. Mohapatra S, Minocha R, Long S, Minocha SC (2009) Putrescine overproduction negatively impacts the oxidative state of poplar cells in culture. Plant Physiol Biochem 47:262–271PubMedCrossRefGoogle Scholar
  51. Mohapatra S, Cherry S, Minocha R, Majumdar R, Thangavel P, Long S, Minocha SC (2010) The response of high and low polyamine-producing cell lines to aluminum and calcium stress. Plant Physiol Biochem 48:612–620PubMedCrossRefGoogle Scholar
  52. Muñiz L, Minguet EG, Singh SK, Pesquet E, Vera-Sirera F, Moreau-Courtois CL, Carbonell J, Blázquez MA, Tuominen H (2008) ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development 135:2573–2582PubMedCrossRefGoogle Scholar
  53. Naka Y, Watanabe K, Sagor GH, Niitsu M, Pillai MA, Kusano T, Takahashi Y (2010) Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress. Plant Physiol Biochem 48:527–533PubMedCrossRefGoogle Scholar
  54. Nambeesan S, Datsenka T, Ferruzzi MG, Malladi A, Mattoo AK, Handa AK (2010) Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. Plant J 63:836–847PubMedCrossRefGoogle Scholar
  55. Neily MH, Matsukura C, Maucourt M, Bernillon S, Deborde C, Moing A, Yin YG, Saito T, Mori K, Asamizu E, Rolin D, Moriguchi T, Ezura H (2010) Enhanced polyamine accumulation alters carotenoid metabolism at the transcriptional level in tomato fruit over-expressing spermidine synthase. J Plant Physiol 168:242–252PubMedCrossRefGoogle Scholar
  56. Oshima T (2010) Enigmas of biosyntheses of unusual polyamines in an extreme thermophile, Thermus thermophilus. Plant Physiol Biochem 48:521–526PubMedCrossRefGoogle Scholar
  57. Page AF, Mohapatra S, Minocha R, Minocha SC (2007) The effects of genetic manipulation of putrescine biosynthesis on transcription and activities of the other polyamine biosynthetic enzymes. Physiol Plant 129:707–724CrossRefGoogle Scholar
  58. Page AF, Minocha R, Minocha SC (2010) Living with high putrescine: expression of ornithine and arginine biosynthetic pathway genes in high and low putrescine producing poplar cells. Amino Acids. doi: 10.1007/s00726-010-0807-9
  59. Panicot M, Minguet EG, Ferrando A, Alcázar R, Blázquez MA, Carbonell J, Altabella T, Koncz C, Tiburcio AF (2002) A polyamine metabolon involving aminopropyl transferase complexes in Arabidopsis. Plant Cell 14:2539–2551PubMedCrossRefGoogle Scholar
  60. Parvin S, Kim YJ, Pulla RK, Sathiyamoorthy S, Miah MG, Wasnik NG, Yang DC (2010) Identification and characterization of spermidine synthase gene from Panax ginseng. Mol Biol Rep 37:923–932PubMedCrossRefGoogle Scholar
  61. Pegg AE, Michael AJ (2010) Spermine synthase. Cell Mol Life Sci 67:113–121PubMedCrossRefGoogle Scholar
  62. Porta R, Esposito C, Sellinger OZ (1981) Rapid assay of spermidine synthase activity for high-performance liquid chromatography. J Chromatogr 226:208–212PubMedCrossRefGoogle Scholar
  63. Rambla JL, Vera-Sirera F, Blázquez MA, Carbonell J, Granell A (2010) Quantitation of biogenic tetraamines in Arabidopsis thaliana. Anal Biochem 397:208–211PubMedCrossRefGoogle Scholar
  64. Roberts SC, Jiang Y, Jardim A, Carter NS, Heby O, Ullman B (2001) Genetic analysis of spermidine synthase from Leishmania donovani. Mol Biochem Parasitol 115:217–226PubMedCrossRefGoogle Scholar
  65. Rodríguez-Kessler M, Alpuche-Solís AG, Ruiz OA, Jiménez-Bremont JF (2006) Effect of salt stress on the regulation of maize (Zea mays, L.) genes involved in polyamine biosynthesis. Plant Growth Regul 48:175–185CrossRefGoogle Scholar
  66. Rodríguez-Kessler M, Delgado-Sánchez P, Rodríguez-Kessler GT, Moriguchi T, Jiménez-Bremont JF (2010) Genomic organization of plant aminopropyl transferases. Plant Physiol Biochem 48:574–590PubMedCrossRefGoogle Scholar
  67. Romer P, Faltermeier A, Mertins V, Gedrange T, Mai R, Proff P (2008) Investigations about N-aminopropyl transferases probably involved in biomineralization. J Physiol Pharmacol 59(Suppl 5):27–37PubMedGoogle Scholar
  68. Shah P, Nanduri B, Swiatlo E, Ma Y, Pendarvis K (2011) Polyamine biosynthesis and transport mechanisms are crucial for fitness and pathogenesis of Streptococcus pneumoniae. Microbiology 157:504–515PubMedCrossRefGoogle Scholar
  69. Tanimoto S, Matsubara Y (1995) Stimulating effect of spermine on bulblet formation in bulb-scale segments of Lilium longiflorum. Plant Cell Rep 15:297–300CrossRefGoogle Scholar
  70. Tassoni A, Franceschetti M, Bagni N (2008) Polyamines and salt stress response and tolerance in Arabidopsis thaliana flowers. Plant Physiol Biochem 46:607–613PubMedCrossRefGoogle Scholar
  71. Trénor M, Perez-Amador MA, Carbonell J, Blázquez MA (2010) Expression of polyamine biosynthesis genes during parthenocarpic fruit development in Citrus clementina. Planta 231:1401–1411PubMedCrossRefGoogle Scholar
  72. Urano K, Yoshiba Y, Nanjo T, Igarashi Y, Seki M, Sekiguchi F, Yamaguchi-Shinozaki K, Shinozaki K (2003) Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ 26:1917–1926CrossRefGoogle Scholar
  73. Valdés-Santiago L, Cervantes-Chávez JA, Ruiz-Herrera J (2009) Ustilago maydis spermidine synthase is encoded by a chimeric gene, required for morphogenesis, and indispensable for survival in the host. FEMS Yeast Res 9:923–935PubMedCrossRefGoogle Scholar
  74. Vera-Sirera F, Minguet EG, Singh SK, Ljung K, Tuominen H, Blázquez MA, Carbonell J (2010) Role of polyamines in plant vascular development. Plant Physiol Biochem 48:534–539PubMedCrossRefGoogle Scholar
  75. Wen XP, Pang XM, Matsuda N, Kita M, Inoue H, Hao YJ, Honda C, Moriguchi T (2008) Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263PubMedCrossRefGoogle Scholar
  76. Wen XP, Ban Y, Inoue H, Matsuda N, Moriguchi T (2009) Aluminum tolerance in a spermidine synthase-overexpressing transgenic European pear is correlated with the enhanced level of spermidine via alleviating oxidative status. Environ Exp Bot 66:471–478CrossRefGoogle Scholar
  77. Wen XP, Ban Y, Inoue H, Matsuda N, Moriguchi T (2010) Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic European pear by exerting antioxidant activities. Transgenic Res 19:91–103PubMedCrossRefGoogle Scholar
  78. West HM, Walters DR (1988) The effects of polyamine biosynthesis inhibitors on infection of Hordeum vulgare L. by Erysiphe graminis f.sp. hordei Marchal. New Phytol 110:193–200CrossRefGoogle Scholar
  79. West HM, Walters DR (1989) Effects of polyamine biosynthesis inhibitors on growth of Pyrenophora teres, Gaeumannomyces graminis, Fusarium culmorum and Septoria nodorum in vitro. Mycol Res 92:453–457CrossRefGoogle Scholar
  80. Wortham B, Oliveira M, Patel C (2007) Polyamines in bacteria: pleiotropic effects yet specific mechanisms. Adv Exp Med Biol 603:106–115PubMedCrossRefGoogle Scholar
  81. Wu H, Min J, Ikeguchi Y, Zeng H, Dong A, Loppnau P, Pegg AE, Plotnikov AN (2007) Structure and mechanism of spermidine synthases. Biochemistry 46:8331–8339PubMedCrossRefGoogle Scholar
  82. Wu H, Min J, Zeng H, McCloskey DE, Ikeguchi Y, Loppnau P, Michael AJ, Pegg AE, Plotnikov AN (2008) Crystal structure of human spermine synthase: implications of substrate binding and catalytic mechanism. J Biol Chem 283:16135–16146PubMedCrossRefGoogle Scholar
  83. Xiao Y, McCloskey DE, Phillips MA (2009) RNA interference-mediated silencing of ornithine decarboxylase and spermidine synthase genes in Trypanosoma brucei provides insight into regulation of polyamine biosynthesis. Eukaryot Cell 8:747–755PubMedCrossRefGoogle Scholar
  84. Yamaguchi K, Takahashi Y, Berberich T, Imai A, Miyazaki A, Takahashi T, Michael A, Kusano T (2006) The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett 580:6783–6788PubMedCrossRefGoogle Scholar
  85. Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun 352:486–490PubMedCrossRefGoogle Scholar
  86. Yoon SO, Lee YS, Lee SH, Cho YD (2000) Polyamine synthesis in plants: isolation and characterization of spermidine synthase from soybean (Glycine max) axes. Biochim Biophys Acta 1475:17–26PubMedCrossRefGoogle Scholar
  87. Zhang Z, Honda C, Kita M, Hu C, Nakayama M, Moriguchi T (2003) Structure and expression of spermidine synthase genes in apple: two cDNAs are spatially and developmentally regulated through alternative splicing. Mol Genet Genomics 268:799–807PubMedGoogle Scholar
  88. Zhou X, Chua TK, Tkaczuk KL, Bujnicki JM, Sivaraman J (2010) The crystal structure of Escherichia coli spermidine synthase SpeE reveals a unique substrate-binding pocket. J Struct Biol 169:277–285PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Lin Shao
    • 1
  • Rajtilak Majumdar
    • 1
  • Subhash C. Minocha
    • 1
    Email author
  1. 1.Department of Biological SciencesUniversity of New HampshireDurhamUSA

Personalised recommendations