Amino Acids

, Volume 42, Issue 6, pp 2307–2318 | Cite as

Arabidopsis mutants lacking asparaginases develop normally but exhibit enhanced root inhibition by exogenous asparagine

  • Ana Ivanov
  • Alexander Kameka
  • Agnieszka Pajak
  • Luanne Bruneau
  • Ronald Beyaert
  • Cinta Hernández-Sebastià
  • Frédéric Marsolais
Original Article


Asparaginase catalyzes the degradation of l-asparagine to l-aspartic acid and ammonia, and is implicated in the catabolism of transported asparagine in sink tissues of higher plants. The Arabidopsis genome includes two genes, ASPGA1 and ASPGB1, belonging to distinct asparaginase subfamilies. Conditions of severe nitrogen limitation resulted in a slight decrease in seed size in wild-type Arabidopsis. However, this response was not observed in a homozygous T-DNA insertion mutant where ASPG genes had been inactivated. Under nitrogen-sufficient conditions, the ASPG mutant had elevated levels of free asparagine in mature seed. This phenotype was observed exclusively under conditions of low illumination, when a low ratio of carbon to nitrogen was translocated to the seed. Mutants deficient in one or both asparaginases were more sensitive than wild-type to inhibition of primary root elongation and root hair emergence by l-asparagine as a single nitrogen source. This enhanced inhibition was associated with increased accumulation of asparagine in the root of the double aspga1-1/-b1-1 mutant. This indicates that inhibition of root growth is likely elicited by asparagine itself or an asparagine-derived metabolite, other than the products of asparaginase, aspartic acid or ammonia. During germination, a fusion between the ASPGA1 promoter and beta-glucuronidase was expressed in endosperm cells starting at the micropylar end. Expression was initially high throughout the root and hypocotyl, but became restricted to the root tip after three days, which may indicate a transition to nitrogen-heterotrophic growth.


Asparaginase Asparagine Mutants Root elongation Root hair formation Nutrient sensing 

Supplementary material

726_2011_973_MOESM1_ESM.pdf (55 kb)
Supplementary material 1 (PDF 55 kb) Table 1 C, S and N content of mature seed of wild-type and aspga1-1/-b1-1 grown under normal (115 μmol photons m−2 sec−1) or low (70 μmol photons m−2 sec−1) illumination. Table 2 Total amino acid profile of mature seeds of wild-type and aspga1-1/-b1-1 grown under low light conditions
726_2011_973_MOESM2_ESM.pdf (36 kb)
Supplementary material 2 (PDF 35 kb) Figure 1 Graphs of D × G interactions from ANOVA of values in Tables 2 (a) and 3 (b)


  1. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301(5633):653–657PubMedCrossRefGoogle Scholar
  2. Bi YM, Zhang Y, Signorelli T, Zhao R, Zhu T, Rothstein S (2005) Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity. Plant J 44(4):680–692PubMedCrossRefGoogle Scholar
  3. Bruneau L, Chapman R, Marsolais F (2006) Co-occurrence of both l-asparaginase subtypes in Arabidopsis: At3g16150 encodes a K+-dependent l-asparaginase. Planta 224(3):668–679PubMedCrossRefGoogle Scholar
  4. Canales J, Flores-Monterrosso A, Rueda-López M, Avila C, Cánovas FM (2010) Identification of genes regulated by ammonium availability in the roots of maritime pine trees. Amino Acids 39(4):991–1001PubMedCrossRefGoogle Scholar
  5. Cañas RA, De La Torre F, Cánovas FM, Cantón FR (2006) High levels of asparagine synthetase in hypocotyls of pine seedlings suggest a role of the enzyme in re-allocation of seed-stored nitrogen. Planta 224(1):83–95PubMedCrossRefGoogle Scholar
  6. Cañas RA, de la Torre F, Cánovas FM, Cantón FR (2007) Coordination of PsAS1 and PsASPG expression controls timing of re-allocated N utilization in hypocotyls of pine seedlings. Planta 225:1205–1219PubMedCrossRefGoogle Scholar
  7. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743PubMedCrossRefGoogle Scholar
  8. Credali A, Díaz-Quintana A, García-Calderón M, De la Rosa MA, Márquez AJ, Vega JM (2011) Structural analysis of K+ dependence in l-asparaginases from Lotus japonicus. Planta 234(1):109–122Google Scholar
  9. Dytham C (1999) Choosing and using statistics: a biologist’s guide. Blackwell Science Ltd., OxfordGoogle Scholar
  10. Fait A, Angelovici R, Less H, Ohad I, Urbanczyk-Wochniak E, Fernie AR, Galili G (2006) Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol 142(3):839–854PubMedCrossRefGoogle Scholar
  11. Forsum O, Svennerstam H, Ganeteg U, Näsholm T (2008) Capacities and constraints of amino acid utilization in Arabidopsis. New Phytol 179(4):1058–1069PubMedGoogle Scholar
  12. Grant M, Bevan MW (1994) Asparaginase gene expression is regulated in a complex spatial and temporal pattern in nitrogen-sink tissues. Plant J 5(5):695–704CrossRefGoogle Scholar
  13. Gudynaite-Savitch L, Johnson DA, Miki BL (2009) Strategies to mitigate transgene-promoter interactions. Plant Biotech J 7(5):472–485CrossRefGoogle Scholar
  14. Gutiérrez RA, Stokes TL, Thum K, Xu X, Obertello M, Katari MS, Tanurdzic M, Dean A, Nero DC, McClung CR, Coruzzi GM (2008) Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1. Proc Natl Acad Sci USA 105(12):4939–4944PubMedCrossRefGoogle Scholar
  15. Havir EA, McHale NA (1988) A mutant of Nicotiana sylvestris lacking serine:glyoxylate aminotransferase: substrate specificity of the enzyme and fate of [2–14C]glycolate in plants with genetically altered enzyme levels. Plant Physiol 87(4):806–808PubMedCrossRefGoogle Scholar
  16. Herridge RP, Day RC, Baldwin S, Macknight RC (2011) Rapid analysis of seed size in Arabidopsis for mutant and QTL discovery. Plant Methods 7(1):3PubMedCrossRefGoogle Scholar
  17. Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, Frommer WB, Koch W (2006) Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18(8):1931–1946PubMedCrossRefGoogle Scholar
  18. Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5(11):R85PubMedCrossRefGoogle Scholar
  19. Imsande J, Touraine B (1994) N demand and the regulation of nitrate uptake. Plant Physiol 105(1):3–7PubMedGoogle Scholar
  20. Ireland RJ, Joy KW (1981) Two routes for asparagine metabolism in Pisum sativum L. Planta 151(3):289–292CrossRefGoogle Scholar
  21. Ireland RJ, Joy KW (1983) Purification and properties of an asparagine aminotransferase from Pisum sativum leaves. Arch Biochem Biophys 223(1):291–296PubMedCrossRefGoogle Scholar
  22. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907PubMedGoogle Scholar
  23. Kendziorek M, Paszkowski A (2008) Properties of serine:glyoxylate aminotransferase purified from Arabidopsis thaliana leaves. Acta Biochim Biophys Sin 40(2):102–110PubMedCrossRefGoogle Scholar
  24. Lea PJ, Sodek L, Parry MAJ, Shewry PR, Halford NG (2007) Asparagine in plants. Ann Appl Biol 150(1):1–26CrossRefGoogle Scholar
  25. Lee Y-H, Foster J, Chen J, Voll LM, Weber AP, Tegeder M (2007) AAP1 transports uncharged amino acids into roots of Arabidopsis. Plant J 50(2):305–319PubMedCrossRefGoogle Scholar
  26. Li Y, Beisson F, Pollard M, Ohlrogge J (2006) Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation. Phytochemistry 67(9):904–915PubMedCrossRefGoogle Scholar
  27. Liepman AH, Olsen LJ (2001) Peroxisomal alanine: glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana. Plant J 25(5):487–498PubMedCrossRefGoogle Scholar
  28. Lohaus G, Moellers C (2000) Phloem transport of amino acids in two Brassica napus L. genotypes and one B. carinata genotype in relation to their seed protein content. Planta 211(6):833–840PubMedCrossRefGoogle Scholar
  29. Michalska K, Jaskolski M (2006) Structural aspects of l-asparaginases, their friends and relations. Acta Biochim Pol 53(4):627–640PubMedGoogle Scholar
  30. Miller AJ, Fan X, Shen Q, Smith SJ (2008) Amino acids and nitrate as signals for the regulation of nitrogen acquisition. J Exp Bot 59(1):111–119PubMedCrossRefGoogle Scholar
  31. Molnár-Perl I, Vasanits A (1999) Stability and characteristics of the o-phthaldialdehyde/3-mercaptopropionic acid and o-phthaldialdehyde/N-acetyl-cysteine reagents and their amino acid derivatives measured by high-performance liquid chromatography. J Chromatogr A 835(1–2):73–91CrossRefGoogle Scholar
  32. Murray AJS, Blackwell RD, Joy KW, Lea PJ (1987) Photorespiratory N donors, aminotransferase specificity and photosynthesis in a mutant of barley deficient in serine:glyoxylate aminotransferase activity. Planta 172(1):106–113CrossRefGoogle Scholar
  33. Murray DR, Kennedy IR (1980) Changes in activities of enzymes of nitrogen metabolism in seedcoats and cotyledons during embryo development in pea seeds. Plant Physiol 66(4):782–786PubMedCrossRefGoogle Scholar
  34. Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41(5):697–709PubMedCrossRefGoogle Scholar
  35. Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182(1):31–48PubMedCrossRefGoogle Scholar
  36. Ogé L, Bourdais G, Bove J, Collet B, Godin B, Granier F, Boutin JP, Job D, Jullien M, Grappin P (2008) Protein repair l-isoaspartyl methyltransferase 1 is involved in both seed longevity and germination vigor in Arabidopsis. Plant Cell 20(11):3022–3037PubMedCrossRefGoogle Scholar
  37. Penfield S, Rylott EL, Gilday AD, Graham S, Larson TR, Graham IA (2004) Reserve mobilization in the Arabidopsis endosperm fuels hypocotyl elongation in the dark, is independent of abscisic acid, and requires PHOSPHOENOLPYRUVATE CARBOXYKINASE1. Plant Cell 16(10):2705–2718PubMedCrossRefGoogle Scholar
  38. Peng M, Hannam C, Gu H, Bi YM, Rothstein SJ (2007) A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. Plant J 50(2):320–337PubMedCrossRefGoogle Scholar
  39. Robinson SP, Beevers H (1981) Amino acid transport in germinating castor bean seedlings. Plant Physiol 68(3):560–566PubMedCrossRefGoogle Scholar
  40. Rose AB, Elfersi T, Parra G, Korf I (2008) Promoter-proximal introns in Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression. Plant Cell 20(3):543–551PubMedCrossRefGoogle Scholar
  41. Sanders A, Collier R, Trethewy A, Gould G, Sieker R, Tegeder M (2009) AAP1 regulates import of amino acids into developing Arabidopsis embryos. Plant J 59(4):540–552PubMedCrossRefGoogle Scholar
  42. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37(5):501–506PubMedCrossRefGoogle Scholar
  43. Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14(12):2985–2994PubMedCrossRefGoogle Scholar
  44. Sieciechowicz KA, Ireland RJ, Joy KW (1985) Diurnal variation of asparaginase in developing pea leaves. Plant Physiol 77(2):506–508PubMedCrossRefGoogle Scholar
  45. Sodek L, Lea PJ, Miflin BJ (1980) Distribution and properties of a potassium-dependent asparaginase isolated from developming seeds of Pisum sativum and other plants. Plant Physiol 65(1):22–26PubMedCrossRefGoogle Scholar
  46. Sulieman S, Fischinger SA, Gresshoff PM, Schulze J (2010) Asparagine as a major factor in the N-feedback regulation of N2 fixation in Medicago truncatula. Physiol Plant 140(1):21–31PubMedCrossRefGoogle Scholar
  47. Svennerstam H, Ganeteg U, Bellini C, Nashölm T (2007) Comprehensive screening of Arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids. Plant Physiol 143(4):1853–1860PubMedCrossRefGoogle Scholar
  48. Taylor M, Chapman R, Beyaert R, Hernández-Sebastià C, Marsolais F (2008) Seed storage protein deficiency improves sulfur amino acid content in common bean (Phaseolus vulgaris L.): redirection of sulfur from gamma-glutamyl-S-methyl-cysteine. J Agric Food Chem 56(14):5647–5654PubMedCrossRefGoogle Scholar
  49. Tranbarger TJ, Al-Ghazi Y, Muller B, Teyssendier de la Serve B, Doumas P, Touraine B (2003) A macro-array-based screening approach to identify transcriptional factors involved in the nitrogen-related root plasticity response of Arabidopsis thaliana. Agronomie 23(5–6):519–528CrossRefGoogle Scholar
  50. Vincze E, Reeves JM, Lamping E, Farnden KJF, Reynolds PHS (1994) Repression of the l-asparaginase gene during nodule development in Lupinus angustifolius. Plant Mol Biol 26(1):303–311PubMedCrossRefGoogle Scholar
  51. Walch-Liu P, Liu L-H, Remans T, Tester M, Forde BG (2006) Evidence that l-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell Physiol 47(8):1045–1057PubMedCrossRefGoogle Scholar
  52. Wang RC, Okamoto M, Xing XJ, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 132(2):556–567PubMedCrossRefGoogle Scholar
  53. Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2(1):e718PubMedCrossRefGoogle Scholar
  54. Woody ST, Austin-Phillips S, Amasino RM, Krysan PJ (2007) The WiscDsLox T-DNA collection: an arabidopsis community resource generated by using an improved high-throughput T-DNA sequencing pipeline. J Plant Res 120(1):157–165PubMedCrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Rights of Canada 2011

Authors and Affiliations

  • Ana Ivanov
    • 1
    • 2
  • Alexander Kameka
    • 2
  • Agnieszka Pajak
    • 2
  • Luanne Bruneau
    • 2
  • Ronald Beyaert
    • 3
  • Cinta Hernández-Sebastià
    • 2
  • Frédéric Marsolais
    • 1
    • 2
  1. 1.Department of BiologyUniversity of Western OntarioLondonCanada
  2. 2.Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondonCanada
  3. 3.Agriculture and Agri-Food CanadaDelhiCanada

Personalised recommendations