Amino Acids

, Volume 42, Issue 6, pp 2149–2163 | Cite as

Identification of c-myc-dependent proteins in the medulloblastoma cell line D425Med

Original Article


High c-myc levels are linked to poor prognosis in medulloblastoma (MB), and it was the aim of the current study to search for c-myc-dependent proteins in the MB cell line D425Med. For this purpose D425Med cells and cells with knocked-down c-myc (by siRNA) were analysed by a gel-based differential proteomics study using mass spectrometry. Heterogeneous nuclear ribonucleoproteins C1/C2, heterogeneous nuclear ribonucleoprotein A/B, stathmin, endoplasmic reticulum protein ERp29 precursor and guanidinoacetate N-methyltransferase were c-myc dependently expressed. Signalling, the protein machinery, metabolism and endoplasmic reticulum function may be affected and these results enable studying tumour tissue for these proteins as potential dignity markers or pharmacological targets.


Brain tumour Medulloblastoma c-myc myc 



Two-dimensional gel electrophoresis


Guanidinoacetate N-methyltransferase


Heterogeneous nuclear ribonucleoprotein


Human telomerase reverse transcriptase




Primitive neuroectodermal tumour

Supplementary material

726_2011_953_MOESM1_ESM.doc (160 kb)
Supplementary material 1 (DOC 160 kb)


  1. Ahn J, Murphy M, Kratowicz S, Wang A, Levine AJ, George DL (1999) Down-regulation of the stathmin/Op18 and FKBP25 genes following p53 induction. Oncogene 18:5954–5958PubMedCrossRefGoogle Scholar
  2. Aldosari N, Bigner SH, Burger PC, Becker L, Kepner JL, Friedman HS, McLendon RE (2002) MYCC and MYCN oncogene amplification in medulloblastoma. A fluorescence in situ hybridization study on paraffin sections from the Children’s Oncology Group. Arch Pathol Lab Med 126:540–544PubMedGoogle Scholar
  3. Alli E, Yang JM, Ford JM, Hait WN (2007a) Reversal of stathmin-mediated resistance to paclitaxel and vinblastine in human breast carcinoma cells. Mol Pharmacol 71:1233–1240PubMedCrossRefGoogle Scholar
  4. Alli E, Yang JM, Hait WN (2007b) Silencing of stathmin induces tumor-suppressor function in breast cancer cell lines harboring mutant p53. Oncogene 26:1003–1012PubMedCrossRefGoogle Scholar
  5. Azizi AA, Kang SU, Freilinger A, Gruber-Olipitz M, Chen WQ, Yang JW, Hengstschlager M, Slavc I, Lubec G (2008) Mitosis-dependent protein expression in neuroblastoma cell line N1E−115. J Proteome Res 7:3412–3422PubMedCrossRefGoogle Scholar
  6. Bambang IF, Xu S, Zhou J, Salto-Tellez M, Sethi SK, Zhang D (2009) Overexpression of endoplasmic reticulum protein 29 regulates mesenchymal–epithelial transition and suppresses xenograft tumor growth of invasive breast cancer cells. Lab Invest 89:1229–1242PubMedCrossRefGoogle Scholar
  7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  8. Braissant O, Bachmann C, Henry H (2007) Expression and function of AGAT, GAMT and CT1 in the mammalian brain. Subcell Biochem 46:67–81PubMedCrossRefGoogle Scholar
  9. Brattsand G (2000) Correlation of oncoprotein 18/stathmin expression in human breast cancer with established prognostic factors. Br J Cancer 83:311–318PubMedCrossRefGoogle Scholar
  10. Bullions LC, Levine AJ (1998) The role of beta-catenin in cell adhesion, signal transduction, and cancer. Curr Opin Oncol 10:81–87PubMedCrossRefGoogle Scholar
  11. Chapman CA, Waber DP, Bernstein JH, Pomeroy SL, LaVally B, Sallan SE, Tarbell N (1995) Neurobehavioral and neurologic outcome in long-term survivors of posterior fossa brain tumors: role of age and perioperative factors. J Child Neurol 10:209–212PubMedCrossRefGoogle Scholar
  12. Chen G, Wang H, Gharib TG, Huang CC, Thomas DG, Shedden KA, Kuick R, Taylor JM, Kardia SL, Misek DE, Giordano TJ, Iannettoni MD, Orringer MB, Hanash SM, Beer DG (2003) Overexpression of oncoprotein 18 correlates with poor differentiation in lung adenocarcinomas. Mol Cell Proteomics 2:107–116PubMedCrossRefGoogle Scholar
  13. Chen WQ, Kang SU, Lubec G (2006) Protein profiling by the combination of two independent mass spectrometry techniques. Nat Protoc 1:1446–1452PubMedCrossRefGoogle Scholar
  14. Cheretis C, Dietrich F, Chatzistamou I, Politi K, Angelidou E, Kiaris H, Mkrtchian S, Koutselini H (2006) Expression of ERp29, an endoplasmic reticulum secretion factor in basal-cell carcinoma. Am J Dermatopathol 28:410–412PubMedCrossRefGoogle Scholar
  15. Choi H, Park CS, Kim BG, Cho JW, Park JB, Bae YS, Bae DS (2001) Creatine kinase B is a target molecule of reactive oxygen species in cervical cancer. Mol Cells 12:412–417PubMedGoogle Scholar
  16. Christian KJ, Lang MA, Raffalli-Mathieu F (2008) Interaction of heterogeneous nuclear ribonucleoprotein C1/C2 with a novel cis-regulatory element within p53 mRNA as a response to cytostatic drug treatment. Mol Pharmacol 73:1558–1567PubMedCrossRefGoogle Scholar
  17. Claassen GF, Hann SR (1999) Myc-mediated transformation: the repression connection. Oncogene 18:2925–2933PubMedCrossRefGoogle Scholar
  18. Das P, Puri T, Suri V, Sharma MC, Sharma BS, Sarkar C (2009) Medulloblastomas: a correlative study of MIB-1 proliferation index along with expression of c-Myc, ERBB2, and anti-apoptotic proteins along with histological typing and clinical outcome. Childs Nerv Syst 25:825–835PubMedCrossRefGoogle Scholar
  19. Dennis M, Spiegler BJ, Hetherington CR, Greenberg ML (1996) Neuropsychological sequelae of the treatment of children with medulloblastoma. J Neurooncol 29:91–101PubMedCrossRefGoogle Scholar
  20. Eberhart CG, Tihan T, Burger PC (2000) Nuclear localization and mutation of beta-catenin in medulloblastomas. J Neuropathol Exp Neurol 59:333–337PubMedGoogle Scholar
  21. Ellison DW, Onilude OE, Lindsey JC, Lusher ME, Weston CL, Taylor RE, Pearson AD, Clifford SC (2005) Beta-catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J Clin Oncol 23:7951–7957PubMedCrossRefGoogle Scholar
  22. Fattet S, Haberler C, Legoix P, Varlet P, Lellouch-Tubiana A, Lair S, Manie E, Raquin MA, Bours D, Carpentier S, Barillot E, Grill J, Doz F, Puget S, Janoueix-Lerosey I, Delattre O (2009) Beta-catenin status in paediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics. J Pathol 218:86–94PubMedCrossRefGoogle Scholar
  23. Feng Y, Tian ZM, Wan MX, Zheng ZB (2007) Protein profile of human hepatocarcinoma cell line SMMC-7721: identification and functional analysis. World J Gastroenterol 13:2608–2614PubMedGoogle Scholar
  24. Giampietro C, Luzzati F, Gambarotta G, Giacobini P, Boda E, Fasolo A, Perroteau I (2005) Stathmin expression modulates migratory properties of GN-11 neurons in vitro. Endocrinology 146:1825–1834PubMedCrossRefGoogle Scholar
  25. Gilbertson R, Wickramasinghe C, Hernan R, Balaji V, Hunt D, Jones-Wallace D, Crolla J, Perry R, Lunec J, Pearson A, Ellison D (2001) Clinical and molecular stratification of disease risk in medulloblastoma. Br J Cancer 85:705–712PubMedCrossRefGoogle Scholar
  26. Goldwein JW, Radcliffe J, Johnson J, Moshang T, Packer RJ, Sutton LN, Rorke LB, D’Angio GJ (1996) Updated results of a pilot study of low dose craniospinal irradiation plus chemotherapy for children under five with cerebellar primitive neuroectodermal tumors (medulloblastoma). Int J Radiat Oncol Biol Phys 34:899–904PubMedCrossRefGoogle Scholar
  27. Grotzer MA, Hogarty MD, Janss AJ, Liu X, Zhao H, Eggert A, Sutton LN, Rorke LB, Brodeur GM, Phillips PC (2001) MYC messenger RNA expression predicts survival outcome in childhood primitive neuroectodermal tumor/medulloblastoma. Clin Cancer Res 7:2425–2433PubMedGoogle Scholar
  28. Grotzer MA, von Hoff K, von Bueren AO, Shalaby T, Hartmann W, Warmuth-Metz M, Emser A, Kortmann RD, Kuehl J, Pietsch T, Rutkowski S (2007) Which clinical and biological tumor markers proved predictive in the prospective multicenter trial HIT’91—implications for investigating childhood medulloblastoma. Klin Padiatr 219:312–317PubMedCrossRefGoogle Scholar
  29. Gruber-Olipitz M, Strobel T, Kang SU, John JP, Grotzer MA, Slavc I, Lubec G (2009) Neurotrophin 3/TrkC-regulated proteins in the human medulloblastoma cell line DAOY. Electrophoresis 30:540–549PubMedCrossRefGoogle Scholar
  30. Hait WN, Yang JM (2006) The individualization of cancer therapy: the unexpected role of p53. Trans Am Clin Climatol Assoc 117:85–101 (discussion 101)PubMedGoogle Scholar
  31. Haley B, Paunesku T, Protic M, Woloschak GE (2009) Response of heterogeneous ribonuclear proteins (hnRNP) to ionising radiation and their involvement in DNA damage repair. Int J Radiat Biol 85:643–655PubMedCrossRefGoogle Scholar
  32. Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell SM, Krush AJ, Berk T, Cohen Z, Tetu B et al (1995) The molecular basis of Turcot’s syndrome. N Engl J Med 332:839–847PubMedCrossRefGoogle Scholar
  33. Harris MN, Ozpolat B, Abdi F, Gu S, Legler A, Mawuenyega KG, Tirado-Gomez M, Lopez-Berestein G, Chen X (2004) Comparative proteomic analysis of all-trans-retinoic acid treatment reveals systematic posttranscriptional control mechanisms in acute promyelocytic leukemia. Blood 104:1314–1323PubMedCrossRefGoogle Scholar
  34. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512PubMedCrossRefGoogle Scholar
  35. Henriksson M, Luscher B (1996) Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res 68:109–182PubMedCrossRefGoogle Scholar
  36. Heo S, Lubec G (2010) Generation and characterization of a specific polyclonal antibody against the mouse serotonin receptor 1A: a state-of-the-art recommendation on how to characterize antibody specificity. Electrophoresis 31:3789–3796PubMedCrossRefGoogle Scholar
  37. Herms J, Neidt I, Luscher B, Sommer A, Schurmann P, Schroder T, Bergmann M, Wilken B, Probst-Cousin S, Hernaiz-Driever P, Behnke J, Hanefeld F, Pietsch T, Kretzschmar HA (2000) C-MYC expression in medulloblastoma and its prognostic value. Int J Cancer 89:395–402PubMedCrossRefGoogle Scholar
  38. Hossain MN, Fuji M, Miki K, Endoh M, Ayusawa D (2007) Downregulation of hnRNP C1/C2 by siRNA sensitizes HeLa cells to various stresses. Mol Cell Biochem 296:151–157PubMedCrossRefGoogle Scholar
  39. Ide T, Brown-Endres L, Chu K, Ongusaha PP, Ohtsuka T, El-Deiry WS, Aaronson SA, Lee SW (2009) GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress. Mol Cell 36:379–392PubMedCrossRefGoogle Scholar
  40. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96PubMedCrossRefGoogle Scholar
  41. Jin K, Mao XO, Cottrell B, Schilling B, Xie L, Row RH, Sun Y, Peel A, Childs J, Gendeh G, Gibson BW, Greenberg DA (2004) Proteomic and immunochemical characterization of a role for stathmin in adult neurogenesis. Faseb J 18:287–299PubMedCrossRefGoogle Scholar
  42. Kim JH, Paek KY, Choi K, Kim TD, Hahm B, Kim KT, Jang SK (2003) Heterogeneous nuclear ribonucleoprotein C modulates translation of c-myc mRNA in a cell cycle phase-dependent manner. Mol Cell Biol 23:708–720PubMedCrossRefGoogle Scholar
  43. Kokkinakis DM, Liu X, Chada S, Ahmed MM, Shareef MM, Singha UK, Yang S, Luo J (2004) Modulation of gene expression in human central nervous system tumors under methionine deprivation-induced stress. Cancer Res 64:7513–7525PubMedCrossRefGoogle Scholar
  44. Korshunov A, Benner A, Remke M, Lichter P, von Deimling A, Pfister S (2008) Accumulation of genomic aberrations during clinical progression of medulloblastoma. Acta Neuropathol 116:383–390PubMedCrossRefGoogle Scholar
  45. Kouzu Y, Uzawa K, Koike H, Saito K, Nakashima D, Higo M, Endo Y, Kasamatsu A, Shiiba M, Bukawa H, Yokoe H, Tanzawa H (2006) Overexpression of stathmin in oral squamous-cell carcinoma: correlation with tumour progression and poor prognosis. Br J Cancer 94:717–723PubMedGoogle Scholar
  46. Kuo MF, Wang HS, Kuo QT, Shun CT, Hsu HC, Yang SH, Yuan RH (2009) High expression of stathmin protein predicts a fulminant course in medulloblastoma. J Neurosurg Pediatr 4:74–80PubMedCrossRefGoogle Scholar
  47. Liu J, Levens D (2006) Making myc. Curr Top Microbiol Immunol 302:1–32PubMedCrossRefGoogle Scholar
  48. MacDonald TJ, Rood BR, Santi MR, Vezina G, Bingaman K, Cogen PH, Packer RJ (2003) Advances in the diagnosis, molecular genetics, and treatment of pediatric embryonal CNS tumors. Oncologist 8:174–186PubMedCrossRefGoogle Scholar
  49. MacLeod JC, Sayer RJ, Lucocq JM, Hubbard MJ (2004) ERp29, a general endoplasmic reticulum marker, is highly expressed throughout the brain. J Comp Neurol 477:29–42PubMedCrossRefGoogle Scholar
  50. Meffert G, Gellerich FN, Margreiter R, Wyss M (2005) Elevated creatine kinase activity in primary hepatocellular carcinoma. BMC Gastroenterol 5:9PubMedCrossRefGoogle Scholar
  51. Melhem RF, Zhu XX, Hailat N, Strahler JR, Hanash SM (1991) Characterization of the gene for a proliferation-related phosphoprotein (oncoprotein 18) expressed in high amounts in acute leukemia. J Biol Chem 266:17747–17753PubMedGoogle Scholar
  52. Mistry SJ, Bank A, Atweh GF (2007) Synergistic antiangiogenic effects of stathmin inhibition and taxol exposure. Mol Cancer Res 5:773–782PubMedCrossRefGoogle Scholar
  53. Mkrtchian S, Baryshev M, Sargsyan E, Chatzistamou I, Volakaki AA, Chaviaras N, Pafiti A, Triantafyllou A, Kiaris H (2008) ERp29, an endoplasmic reticulum secretion factor is involved in the growth of breast tumor xenografts. Mol Carcinog 47:886–892PubMedCrossRefGoogle Scholar
  54. Mori T, Nagase H, Horii A, Miyoshi Y, Shimano T, Nakatsuru S, Aoki T, Arakawa H, Yanagisawa A, Ushio Y et al (1994) Germ-line and somatic mutations of the APC gene in patients with Turcot syndrome and analysis of APC mutations in brain tumors. Genes Chromosomes Cancer 9:168–172PubMedCrossRefGoogle Scholar
  55. Neben K, Korshunov A, Benner A, Wrobel G, Hahn M, Kokocinski F, Golanov A, Joos S, Lichter P (2004) Microarray-based screening for molecular markers in medulloblastoma revealed STK15 as independent predictor for survival. Cancer Res 64:3103–3111PubMedCrossRefGoogle Scholar
  56. Nesbit CE, Tersak JM, Prochownik EV (1999) MYC oncogenes and human neoplastic disease. Oncogene 18:3004–3016PubMedCrossRefGoogle Scholar
  57. Ngo TT, Peng T, Liang XJ, Akeju O, Pastorino S, Zhang W, Kotliarov Y, Zenklusen JC, Fine HA, Maric D, Wen PY, De Girolami U, Black PM, Wu WW, Shen RF, Jeffries NO, Kang DW, Park JK (2007) The 1p-encoded protein stathmin and resistance of malignant gliomas to nitrosoureas. J Natl Cancer Inst 99:639–652PubMedCrossRefGoogle Scholar
  58. Obaya AJ, Mateyak MK, Sedivy JM (1999) Mysterious liaisons: the relationship between c-Myc and the cell cycle. Oncogene 18:2934–2941PubMedCrossRefGoogle Scholar
  59. Packer RJ (2008) Childhood brain tumors: accomplishments and ongoing challenges. J Child Neurol 23:1122–1127PubMedCrossRefGoogle Scholar
  60. Pfister S, Remke M, Benner A, Mendrzyk F, Toedt G, Felsberg J, Wittmann A, Devens F, Gerber NU, Joos S, Kulozik A, Reifenberger G, Rutkowski S, Wiestler OD, Radlwimmer B, Scheurlen W, Lichter P, Korshunov A (2009) Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol 27:1627–1636PubMedCrossRefGoogle Scholar
  61. Prendergast GC (1999) Mechanisms of apoptosis by c-Myc. Oncogene 18:2967–2987PubMedCrossRefGoogle Scholar
  62. Radcliffe J, Packer RJ, Atkins TE, Bunin GR, Schut L, Goldwein JW, Sutton LN (1992) Three- and four-year cognitive outcome in children with noncortical brain tumors treated with whole-brain radiotherapy. Ann Neurol 32:551–554PubMedCrossRefGoogle Scholar
  63. Ray A, Ho M, Ma J, Parkes RK, Mainprize TG, Ueda S, McLaughlin J, Bouffet E, Rutka JT, Hawkins CE (2004) A clinicobiological model predicting survival in medulloblastoma. Clin Cancer Res 10:7613–7620PubMedCrossRefGoogle Scholar
  64. Rogers HA, Miller S, Lowe J, Brundler MA, Coyle B, Grundy RG (2009) An investigation of WNT pathway activation and association with survival in central nervous system primitive neuroectodermal tumours (CNS PNET). Br J Cancer 100:1292–1302PubMedCrossRefGoogle Scholar
  65. Rubin CI, Atweh GF (2004) The role of stathmin in the regulation of the cell cycle. J Cell Biochem 93:242–250PubMedCrossRefGoogle Scholar
  66. Rutkowski S, von Bueren A, von Hoff K, Hartmann W, Shalaby T, Deinlein F, Warmuth-Metz M, Soerensen N, Emser A, Bode U, Mittler U, Urban C, Benesch M, Kortmann RD, Schlegel PG, Kuehl J, Pietsch T, Grotzer M (2007) Prognostic relevance of clinical and biological risk factors in childhood medulloblastoma: results of patients treated in the prospective multicenter trial HIT’91. Clin Cancer Res 13:2651–2657PubMedCrossRefGoogle Scholar
  67. Rutkowski S, Gerber NU, von Hoff K, Gnekow A, Bode U, Graf N, Berthold F, Henze G, Wolff JE, Warmuth-Metz M, Soerensen N, Emser A, Ottensmeier H, Deinlein F, Schlegel PG, Kortmann RD, Pietsch T, Kuehl J (2009) Treatment of early childhood medulloblastoma by postoperative chemotherapy and deferred radiotherapy. Neuro Oncol 11:201–210PubMedCrossRefGoogle Scholar
  68. Sargsyan E, Baryshev M, Szekely L, Sharipo A, Mkrtchian S (2002) Identification of ERp29, an endoplasmic reticulum lumenal protein, as a new member of the thyroglobulin folding complex. J Biol Chem 277:17009–17015PubMedCrossRefGoogle Scholar
  69. Scheurlen WG, Schwabe GC, Joos S, Mollenhauer J, Sorensen N, Kuhl J (1998) Molecular analysis of childhood primitive neuroectodermal tumors defines markers associated with poor outcome. J Clin Oncol 16:2478–2485PubMedGoogle Scholar
  70. Schmidt EV (1999) The role of c-myc in cellular growth control. Oncogene 18:2988–2996PubMedCrossRefGoogle Scholar
  71. Silber JH, Radcliffe J, Peckham V, Perilongo G, Kishnani P, Fridman M, Goldwein JW, Meadows AT (1992) Whole-brain irradiation and decline in intelligence: the influence of dose and age on IQ score. J Clin Oncol 10:1390–1396PubMedGoogle Scholar
  72. Siu IM, Lal A, Blankenship JR, Aldosari N, Riggins GJ (2003) c-Myc promoter activation in medulloblastoma. Cancer Res 63:4773–4776PubMedGoogle Scholar
  73. Spahn A, Blondeau N, Heurteaux C, Dehghani F, Rami A (2008) Concomitant transitory up-regulation of X-linked inhibitor of apoptosis protein (XIAP) and the heterogeneous nuclear ribonucleoprotein C1–C2 in surviving cells during neuronal apoptosis. Neurochem Res 33:1859–1868PubMedCrossRefGoogle Scholar
  74. Stearns D, Chaudhry A, Abel TW, Burger PC, Dang CV, Eberhart CG (2006) c-myc overexpression causes anaplasia in medulloblastoma. Cancer Res 66:673–681PubMedCrossRefGoogle Scholar
  75. Stockler S, Schutz PW, Salomons GS (2007) Cerebral creatine deficiency syndromes: clinical aspects, treatment and pathophysiology. Subcell Biochem 46:149–166PubMedCrossRefGoogle Scholar
  76. Sun W, Xing B, Sun Y, Du X, Lu M, Hao C, Lu Z, Mi W, Wu S, Wei H, Gao X, Zhu Y, Jiang Y, Qian X, He F (2007) Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis: novel protein markers in hepatocellular carcinoma tissues. Mol Cell Proteomics 6:1798–1808PubMedCrossRefGoogle Scholar
  77. Takahashi M, Yang XJ, Lavery TT, Furge KA, Williams BO, Tretiakova M, Montag A, Vogelzang NJ, Re GG, Garvin AJ, Soderhall S, Kagawa S, Hazel-Martin D, Nordenskjold A, Teh BT (2002) Gene expression profiling of favorable histology Wilms tumors and its correlation with clinical features. Cancer Res 62:6598–6605PubMedGoogle Scholar
  78. von Bueren AO, Shalaby T, Rajtarova J, Stearns D, Eberhart CG, Helson L, Arcaro A, Grotzer MA (2007) Anti-proliferative activity of the quassinoid NBT-272 in childhood medulloblastoma cells. BMC Cancer 7:19CrossRefGoogle Scholar
  79. von Bueren AO, Shalaby T, Oehler-Janne C, Arnold L, Stearns D, Eberhart CG, Arcaro A, Pruschy M, Grotzer MA (2009) RNA interference-mediated c-MYC inhibition prevents cell growth and decreases sensitivity to radio- and chemotherapy in childhood medulloblastoma cells. BMC Cancer 9:10CrossRefGoogle Scholar
  80. von Hoff K, Hinkes B, Gerber NU, Deinlein F, Mittler U, Urban C, Benesch M, Warmuth-Metz M, Soerensen N, Zwiener I, Goette H, Schlegel PG, Pietsch T, Kortmann RD, Kuehl J, Rutkowski S (2009) Long-term outcome and clinical prognostic factors in children with medulloblastoma treated in the prospective randomised multicentre trial HIT’91. Eur J Cancer 45:1209–1217CrossRefGoogle Scholar
  81. von Hoff K, Hartmann W, von Bueren AO, Gerber NU, Grotzer MA, Pietsch T, Rutkowski S (2010) Large cell/anaplastic medulloblastoma: outcome according to myc status, histopathological, and clinical risk factors. Pediatr Blood Cancer 54:369–376CrossRefGoogle Scholar
  82. Wei SH, Lin F, Wang X, Gao P, Zhang HZ (2008) Prognostic significance of stathmin expression in correlation with metastasis and clinicopathological characteristics in human ovarian carcinoma. Acta Histochem 110:59–65PubMedCrossRefGoogle Scholar
  83. Yuan RH, Jeng YM, Chen HL, Lai PL, Pan HW, Hsieh FJ, Lin CY, Lee PH, Hsu HC (2006) Stathmin overexpression cooperates with p53 mutation and osteopontin overexpression, and is associated with tumour progression, early recurrence, and poor prognosis in hepatocellular carcinoma. J Pathol 209:549–558PubMedCrossRefGoogle Scholar
  84. Zeltzer PM, Boyett JM, Finlay JL, Albright AL, Rorke LB, Milstein JM, Allen JC, Stevens KR, Stanley P, Li H, Wisoff JH, Geyer JR, McGuire-Cullen P, Stehbens JA, Shurin SB, Packer RJ (1999) Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusions from the Children’s Cancer Group 921 randomized phase III study. J Clin Oncol 17:832–845PubMedGoogle Scholar
  85. Zurawel RH, Chiappa SA, Allen C, Raffel C (1998) Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Res 58:896–899PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of PediatricsMedical University of ViennaViennaAustria
  2. 2.Institute of NeurologyMedical University of ViennaViennaAustria

Personalised recommendations