Amino Acids

, Volume 40, Issue 5, pp 1397–1407 | Cite as

Creatine as a therapeutic strategy for myopathies

Review Article


Myopathies are genetic or acquired disorders of skeletal muscle that lead to varying degrees of weakness, atrophy, and exercise intolerance. In theory, creatine supplementation could have a number of beneficial effects that could enhance function in myopathy patients, including muscle mass, strength and endurance enhancement, lower calcium levels, anti-oxidant effects, and reduced apoptosis. Patients with muscular dystrophy respond to several months of creatine monohydrate supplementation (~0.075–0.1 g/kg/day) with greater strength (~9%) and fat-free mass (~0.63 kg). Patients with myotonic dystrophy do not show as consistent an effect, possibly due to creatine transport issues. Creatine monohydrate supplementation shows modest benefits only at lower doses and possibly negative effects (cramping) at higher doses in McArdle’s disease patients. Patients with MELAS syndrome show some evidence of benefit from creatine supplementation in exercise capacity, with the effects in patients with CPEO being less robust, again, possibly due to limited muscle creatine uptake. The evidence for side effects or negative impact upon serological metrics from creatine supplementation in all groups of myopathy patients is almost non-existent and pale in comparison to the very substantial and well-known side effects from our current chemotherapeutic interventions for some myopathies (i.e., corticosteroids).


Muscular dystrophy Mitochondrial disease Inflammatory myopathy McArdle’s disease Creatine monohydrate 


  1. Alexanderson H (2005) Exercise: an important component of treatment in the idiopathic inflammatory myopathies. Curr Rheumatol Rep 7:115–124PubMedCrossRefGoogle Scholar
  2. Alexanderson H, Dastmalchi M, Esbjornsson-Liljedahl M, Opava CH, Lundberg IE (2007) Benefits of intensive resistance training in patients with chronic polymyositis or dermatomyositis. Arthritis Rheum 57:768–777PubMedCrossRefGoogle Scholar
  3. Antolic A, Roy BD, Tarnopolsky MA, Zernicke RF, Wohl GR, Shaughnessy SG, Bourgeois JM (2007) Creatine monohydrate increases bone mineral density in young Sprague-Dawley rats. Med Sci Sports Exerc 39:816–820PubMedCrossRefGoogle Scholar
  4. Argov Z, Bank WJ (1991) Phosphorus magnetic resonance spectroscopy (31P MRS) in neuromuscular disorders. Ann Neurol 30:90–97PubMedCrossRefGoogle Scholar
  5. Arnardottir S, Alexanderson H, Lundberg IE, Borg K (2003) Sporadic inclusion body myositis: pilot study on the effects of a home exercise program on muscle function, histopathology and inflammatory reaction. J Rehabil Med 35:31–35PubMedCrossRefGoogle Scholar
  6. Baker SK, Tarnopolsky MA (2003) Targeting cellular energy production in neurological disorders. Expert Opin Investig Drugs 12:1655–1679PubMedCrossRefGoogle Scholar
  7. Banerjee B, Sharma U, Balasubramanian K, Kalaivani M, Kalra V, Jagannathan NR (2010) Effect of creatine monohydrate in improving cellular energetics and muscle strength in ambulatory Duchenne muscular dystrophy patients: a randomized, placebo-controlled 31P MRS study. Magn Reson Imaging 28:698–707Google Scholar
  8. Barisic N, Bernert G, Ipsiroglu O, Stromberger C, Muller T, Gruber S, Prayer D, Moser E, Bittner RE, Stockler-Ipsiroglu S (2002) Effects of oral creatine supplementation in a patient with MELAS phenotype and associated nephropathy. Neuropediatrics 33:157–161PubMedCrossRefGoogle Scholar
  9. Biggar WD, Gingras M, Fehlings DL, Harris VA, Steele CA (2001) Deflazacort treatment of Duchenne muscular dystrophy. J Pediatr 138:45–50PubMedCrossRefGoogle Scholar
  10. Borchert A, Wilichowski E, Hanefeld F (1999) Supplementation with creatine monohydrate in children with mitochondrial encephalomyopathies. Muscle Nerve 22:1299–1300PubMedCrossRefGoogle Scholar
  11. Brose A, Parise G, Tarnopolsky MA (2003) Creatine supplementation enhances isometric strength and body composition improvements following strength exercise training in older adults. J Gerontol A Biol Sci Med Sci 58:11–19PubMedGoogle Scholar
  12. Burke DG, Chilibeck PD, Parise G, Tarnopolsky MA, Candow DG (2003) Effect of alpha-lipoic acid combined with creatine monohydrate on human skeletal muscle creatine and phosphagen concentration. Int J Sport Nutr Exerc Metab 13:294–302PubMedGoogle Scholar
  13. Campos AR, Serafini LN, Sobreira C, Menezes LG, Martinez JA (2006) Creatine intake attenuates corticosteroid-induced impairment of voluntary running in hamsters. Appl Physiol Nutr Metab 31:490–494PubMedCrossRefGoogle Scholar
  14. Casey A, Constantin-Teodosiu D, Howell S, Hultman E, Greenhaff PL (1996) Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. Am J Physiol 271:E31–E37PubMedGoogle Scholar
  15. Chrusch MJ, Chilibeck PD, Chad KE, Davison KS, Burke DG (2001) Creatine supplementation combined with resistance training in older men. Med Sci Sports Exerc 33:2111–2117PubMedCrossRefGoogle Scholar
  16. Chung YL, Alexanderson H, Pipitone N, Morrison C, Dastmalchi M, Stahl-Hallengren C, Richards S, Thomas EL, Hamilton G, Bell JD, Lundberg IE, Scott DL (2007) Creatine supplements in patients with idiopathic inflammatory myopathies who are clinically weak after conventional pharmacologic treatment: six-month, double-blind, randomized, placebo-controlled trial. Arthritis Rheum 57:694–702PubMedCrossRefGoogle Scholar
  17. Dangott B, Schultz E, Mozdziak PE (2000) Dietary creatine monohydrate supplementation increases satellite cell mitotic activity during compensatory hypertrophy. Int J Sports Med 21:13–16PubMedCrossRefGoogle Scholar
  18. Escolar DM, Buyse G, Henricson E, Leshner R, Florence J, Mayhew J, Tesi-Rocha C, Gorni K, Pasquali L, Patel KM, McCarter R, Huang J, Mayhew T, Bertorini T, Carlo J, Connolly AM, Clemens PR, Goemans N, Iannaccone ST, Igarashi M, Nevo Y, Pestronk A, Subramony SH, Vedanarayanan VV, Wessel H (2005) CINRG randomized controlled trial of creatine and glutamine in Duchenne muscular dystrophy. Ann Neurol 58:151–155PubMedCrossRefGoogle Scholar
  19. Fenichel GM, Florence JM, Pestronk A, Mendell JR, Moxley RT 3rd, Griggs RC, Brooke MH, Miller JP, Robison J, King W et al (1991) Long-term benefit from prednisone therapy in Duchenne muscular dystrophy. Neurology 41:1874–1877PubMedGoogle Scholar
  20. Granchelli JA, Pollina C, Hudecki MS (2000) Pre-clinical screening of drugs using the mdx mouse. Neuromuscul Disord 10:235–239PubMedCrossRefGoogle Scholar
  21. Hawker GA, Ridout R, Harris VA, Chase CC, Fielding LJ, Biggar WD (2005) Alendronate in the treatment of low bone mass in steroid-treated boys with Duchennes muscular dystrophy. Arch Phys Med Rehabil 86:284–288PubMedCrossRefGoogle Scholar
  22. Hespel P, Op’t Eijnde B, Van Leemputte M (2002) Opposite actions of caffeine and creatine on muscle relaxation time in humans. J Appl Physiol 92:513–518PubMedGoogle Scholar
  23. Kley RA, Tarnopolsky MA, Vorgerd M (2011) Creatine for treating muscle disorders. Cochrane Database Syst Rev:CD004760Google Scholar
  24. Klopstock T, Querner V, Schmidt F, Gekeler F, Walter M, Hartard M, Henning M, Gasser T, Pongratz D, Straube A, Dieterich M, Muller-Felber W (2000) A placebo-controlled crossover trial of creatine in mitochondrial diseases. Neurology 55:1748–1751PubMedGoogle Scholar
  25. Komura K, Hobbiebrunken E, Wilichowski EK, Hanefeld FA (2003) Effectiveness of creatine monohydrate in mitochondrial encephalomyopathies. Pediatr Neurol 28:53–58PubMedCrossRefGoogle Scholar
  26. Korenke GC, Wanders RJ, Hanefeld F (2003) Striking improvement of muscle strength under creatine therapy in a patient with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 26:67–68PubMedCrossRefGoogle Scholar
  27. Kornblum C, Schroder R, Muller K, Vorgerd M, Eggers J, Bogdanow M, Papassotiropoulos A, Fabian K, Klockgether T, Zange J (2005) Creatine has no beneficial effect on skeletal muscle energy metabolism in patients with single mitochondrial DNA deletions: a placebo-controlled, double-blind 31P-MRS crossover study. Eur J Neurol 12:300–309PubMedCrossRefGoogle Scholar
  28. Lawler JM, Barnes WS, Wu G, Song W, Demaree S (2002) Direct antioxidant properties of creatine. Biochem Biophys Res Commun 290:47–52PubMedCrossRefGoogle Scholar
  29. Louis M, Lebacq J, Poortmans JR, Belpaire-Dethiou MC, Devogelaer JP, Van Hecke P, Goubel F, Francaux M (2003) Beneficial effects of creatine supplementation in dystrophic patients. Muscle Nerve 27:604–610PubMedCrossRefGoogle Scholar
  30. Louis M, Raymackers JM, Debaix H, Lebacq J, Francaux M (2004) Effect of creatine supplementation on skeletal muscle of mdx mice. Muscle Nerve 29:687–692PubMedCrossRefGoogle Scholar
  31. Mankodi A, Teng-Umnuay P, Krym M, Henderson D, Swanson M, Thornton CA (2003) Ribonuclear inclusions in skeletal muscle in myotonic dystrophy types 1 and 2. Ann Neurol 54:760–768PubMedCrossRefGoogle Scholar
  32. McClure WC, Rabon RE, Ogawa H, Tseng BS (2007) Upregulation of the creatine synthetic pathway in skeletal muscles of mature mdx mice. Neuromuscul Disord 17:639–650PubMedCrossRefGoogle Scholar
  33. Menezes LG, Sobreira C, Neder L, Rodrigues-Junior AL, Martinez JA (2007) Creatine supplementation attenuates corticosteroid-induced muscle wasting and impairment of exercise performance in rats. J Appl Physiol 102:698–703PubMedCrossRefGoogle Scholar
  34. Mihic S, MacDonald JR, McKenzie S, Tarnopolsky MA (2000) Acute creatine loading increases fat-free mass, but does not affect blood pressure, plasma creatinine, or CK activity in men and women. Med Sci Sports Exerc 32:291–296PubMedCrossRefGoogle Scholar
  35. Milhorat A, Wolff HG (1938) Creatine and creatinine metabolism and diseases of the neuro-muscular system. Arch Neurol Psychiatry 40:663–679Google Scholar
  36. Murphy JL, Blakely EL, Schaefer AM, He L, Wyrick P, Haller RG, Taylor RW, Turnbull DM, Taivassalo T (2008) Resistance training in patients with single, large-scale deletions of mitochondrial DNA. Brain 131:2832–2840PubMedCrossRefGoogle Scholar
  37. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M (2006) Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol 573:525–534PubMedCrossRefGoogle Scholar
  38. Park JH, Vital TL, Ryder NM, Hernanz-Schulman M, Partain CL, Price RR, Olsen NJ (1994) Magnetic resonance imaging and P-31 magnetic resonance spectroscopy provide unique quantitative data useful in the longitudinal management of patients with dermatomyositis. Arthritis Rheum 37:736–746PubMedCrossRefGoogle Scholar
  39. Passaquin AC, Renard M, Kay L, Challet C, Mokhtarian A, Wallimann T, Ruegg UT (2002) Creatine supplementation reduces skeletal muscle degeneration and enhances mitochondrial function in mdx mice. Neuromuscul Disord 12:174–182PubMedCrossRefGoogle Scholar
  40. Payne ET, Yasuda N, Bourgeois JM, Devries MC, Rodriguez MC, Yousuf J, Tarnopolsky MA (2006) Nutritional therapy improves function and complements corticosteroid intervention in mdx mice. Muscle Nerve 33:66–77PubMedCrossRefGoogle Scholar
  41. Pearlman JP, Fielding RA (2006) Creatine monohydrate as a therapeutic aid in muscular dystrophy. Nutr Rev 64:80–88PubMedCrossRefGoogle Scholar
  42. Pittas G, Hazell MD, Simpson EJ, Greenhaff PL (2010) Optimization of insulin-mediated creatine retention during creatine feeding in humans. J Sports Sci 28:67–74Google Scholar
  43. Pulido SM, Passaquin AC, Leijendekker WJ, Challet C, Wallimann T, Ruegg UT (1998) Creatine supplementation improves intracellular Ca2+ handling and survival in mdx skeletal muscle cells. FEBS Lett 439:357–362PubMedCrossRefGoogle Scholar
  44. Robertshaw HA, Raha S, Kaczor JJ, Tarnopolsky MA (2008) Increased PFK activity and GLUT4 protein content in McArdle’s disease. Muscle Nerve 37:431–437PubMedCrossRefGoogle Scholar
  45. Rodriguez MC, MacDonald JR, Mahoney DJ, Parise G, Beal MF, Tarnopolsky MA (2007) Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. Muscle Nerve 35:235–242PubMedCrossRefGoogle Scholar
  46. Roy BD, Bourgeois JM, Mahoney DJ, Tarnopolsky MA (2002) Dietary supplementation with creatine monohydrate prevents corticosteroid-induced attenuation of growth in young rats. Can J Physiol Pharmacol 80:1008–1014PubMedCrossRefGoogle Scholar
  47. Schara U, Mortier Mortier W (2001) Long-term steroid therapy in Duchenne muscular dystrophy-positive results versus side effects. J Clin Neuromuscul Dis 2:179–183PubMedCrossRefGoogle Scholar
  48. Schneider-Gold C, Beck M, Wessig C, George A, Kele H, Reiners K, Toyka KV (2003) Creatine monohydrate in DM2/PROMM: a double-blind placebo-controlled clinical study. Proximal myotonic myopathy. Neurology 60:500–502PubMedGoogle Scholar
  49. Sipila I, Rapola J, Simell O, Vannas A (1981) Supplementary creatine as a treatment for gyrate atrophy of the choroid and retina. N Engl J Med 304:867–870PubMedCrossRefGoogle Scholar
  50. Storey KB, Hochachka PW (1974) Activation of muscle glycolysis: a role for creatine phosphate in phosphofructokinase regulation. FEBS Lett 46:337–339PubMedCrossRefGoogle Scholar
  51. Taivassalo T, Gardner JL, Taylor RW, Schaefer AM, Newman J, Barron MJ, Haller RG, Turnbull DM (2006) Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain 129:3391–3401PubMedCrossRefGoogle Scholar
  52. Tarnopolsky MA (2008) The mitochondrial cocktail: rationale for combined nutraceutical therapy in mitochondrial cytopathies. Adv Drug Deliv Rev 60:1561–1567PubMedCrossRefGoogle Scholar
  53. Tarnopolsky MA, Beal MF (2001) Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann Neurol 49:561–574PubMedCrossRefGoogle Scholar
  54. Tarnopolsky MA, MacLennan DP (2000) Creatine monohydrate supplementation enhances high-intensity exercise performance in males and females. Int J Sport Nutr Exerc Metab 10:452–463PubMedGoogle Scholar
  55. Tarnopolsky M, Martin J (1999) Creatine monohydrate increases strength in patients with neuromuscular disease. Neurology 52:854–857PubMedGoogle Scholar
  56. Tarnopolsky MA, Parise G (1999) Direct measurement of high-energy phosphate compounds in patients with neuromuscular disease. Muscle Nerve 22:1228–1233PubMedCrossRefGoogle Scholar
  57. Tarnopolsky MA, Raha S (2005) Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options. Med Sci Sports Exerc 37:2086–2093PubMedCrossRefGoogle Scholar
  58. Tarnopolsky MA, Roy BD, MacDonald JR (1997) A randomized, controlled trial of creatine monohydrate in patients with mitochondrial cytopathies. Muscle Nerve 20:1502–1509PubMedCrossRefGoogle Scholar
  59. Tarnopolsky MA, Parshad A, Walzel B, Schlattner U, Wallimann T (2001) Creatine transporter and mitochondrial creatine kinase protein content in myopathies. Muscle Nerve 24:682–688PubMedCrossRefGoogle Scholar
  60. Tarnopolsky M, Mahoney D, Thompson T, Naylor H, Doherty TJ (2004a) Creatine monohydrate supplementation does not increase muscle strength, lean body mass, or muscle phosphocreatine in patients with myotonic dystrophy type 1. Muscle Nerve 29:51–58PubMedCrossRefGoogle Scholar
  61. Tarnopolsky MA, Mahoney DJ, Vajsar J, Rodriguez C, Doherty TJ, Roy BD, Biggar D (2004b) Creatine monohydrate enhances strength and body composition in Duchenne muscular dystrophy. Neurology 62:1771–1777PubMedGoogle Scholar
  62. Tarnopolsky MA, Simon DK, Roy BD, Chorneyko K, Lowther SA, Johns DR, Sandhu JK, Li Y, Sikorska M (2004c) Attenuation of free radical production and paracrystalline inclusions by creatine supplementation in a patient with a novel cytochrome b mutation. Muscle Nerve 29:537–547PubMedCrossRefGoogle Scholar
  63. Tarnopolsky M, Zimmer A, Paikin J, Safdar A, Aboud A, Pearce E, Roy B, Doherty T (2007) Creatine monohydrate and conjugated linoleic acid improve strength and body composition following resistance exercise in older adults. PLoS One 2:e991PubMedCrossRefGoogle Scholar
  64. van Adel BA, Tarnopolsky MA (2009) Metabolic myopathies: update 2009. J Clin Neuromuscul Dis 10:97–121PubMedCrossRefGoogle Scholar
  65. Vandenberghe K, Goris M, Van Hecke P, Van Leemputte M, Vangerven L, Hespel P (1997) Long-term creatine intake is beneficial to muscle performance during resistance training. J Appl Physiol 83:2055–2063PubMedGoogle Scholar
  66. Vorgerd M, Grehl T, Jager M, Muller K, Freitag G, Patzold T, Bruns N, Fabian K, Tegenthoff M, Mortier W, Luttmann A, Zange J, Malin JP (2000) Creatine therapy in myophosphorylase deficiency (McArdle disease): a placebo-controlled crossover trial. Arch Neurol 57:956–963PubMedCrossRefGoogle Scholar
  67. Vorgerd M, Zange J, Kley R, Grehl T, Husing A, Jager M, Muller K, Schroder R, Mortier W, Fabian K, Malin JP, Luttmann A (2002) Effect of high-dose creatine therapy on symptoms of exercise intolerance in McArdle disease: double-blind, placebo-controlled crossover study. Arch Neurol 59:97–101PubMedCrossRefGoogle Scholar
  68. Walter MC, Lochmuller H, Reilich P, Klopstock T, Huber R, Hartard M, Hennig M, Pongratz D, Muller-Felber W (2000) Creatine monohydrate in muscular dystrophies: a double-blind, placebo-controlled clinical study. Neurology 54:1848–1850PubMedGoogle Scholar
  69. Walter MC, Reilich P, Lochmuller H, Kohnen R, Schlotter B, Hautmann H, Dunkl E, Pongratz D, Muller-Felber W (2002) Creatine monohydrate in myotonic dystrophy: a double-blind, placebo-controlled clinical study. J Neurol 249:1717–1722PubMedCrossRefGoogle Scholar
  70. Yang L, Calingasan NY, Wille EJ, Cormier K, Smith K, Ferrante RJ, Beal MF (2009) Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson’s and Huntington’s diseases. J Neurochem 109:1427–1439PubMedCrossRefGoogle Scholar
  71. Zhu S, Li M, Figueroa BE, Liu A, Stavrovskaya IG, Pasinelli P, Beal MF, Brown RH Jr, Kristal BS, Ferrante RJ, Friedlander RM (2004) Prophylactic creatine administration mediates neuroprotection in cerebral ischemia in mice. J Neurosci 24:5909–5912PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Pediatrics and MedicineMcMaster UniversityHamiltonCanada

Personalised recommendations