Amino Acids

, Volume 42, Issue 1, pp 231–246 | Cite as

The oxidative stress-inducible cystine/glutamate antiporter, system xc: cystine supplier and beyond

Review Article

Abstract

The oxidative stress-inducible cystine/glutamate exchange system, system xc, transports one molecule of cystine, the oxidized form of cysteine, into cells and thereby releases one molecule of glutamate into the extracellular space. It consists of two protein components, the 4F2 heavy chain, necessary for membrane location of the heterodimer, and the xCT protein, responsible for transport activity. Previously, system xc has been regarded to be a mere supplier of cysteine to cells for the synthesis of proteins and the antioxidant glutathione (GSH). In that sense, oxygen, electrophilic agents, and bacterial lipopolysaccharide trigger xCT expression to accommodate with increased oxidative stress by stimulating GSH biosynthesis. However, emerging evidence established that system xc may act on its own as a GSH-independent redox system by sustaining a redox cycle over the plasma membrane. Hallmarks of this cycle are cystine uptake, intracellular reduction to cysteine and secretion of the surplus of cysteine into the extracellular space. Consequently, increased levels of extracellular cysteine provide a reducing microenvironment required for proper cell signaling and communication, e.g. as already shown for the mechanism of T cell activation. By contrast, the enhanced release of glutamate in exchange with cystine may trigger neurodegeneration due to glutamate-induced cytotoxic processes. This review aims to provide a comprehensive picture from the early days of system xc research up to now.

Keywords

4F2 Cystine/cysteine redox cycle Glutamate Glutathione Slc7a11 xCT 

Notes

Acknowledgments

The authors would like to thank Prof. Bannai for critically reading the manuscript. The work was supported by the Deutsche Forschungsgemeinschaft (DFG) (CO 291/2-2), the DFG-Priority Programme SPP1190 to MC, a JSPS Japan and Germany Bilateral Joint Research Project and a Grant-in-aid for scientific research to HS and a JSPS travel fellowship to MC.

References

  1. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511PubMedCrossRefGoogle Scholar
  2. Albrecht P, Lewerenz J, Dittmer S, Noack R, Maher P, Methner A (2010) Mechanisms of oxidative glutamate toxicity: the glutamate/cystine antiporter system x(c)− as a neuroprotective drug target. CNS Neurol Disord Drug Targets 9:373–382PubMedGoogle Scholar
  3. Anderson CL, Iyer SS, Ziegler TR, Jones DP (2007) Control of extracellular cysteine/cystine redox state by HT-29 cells is independent of cellular glutathione. Am J Physiol Regul Integr Comp Physiol 293:R1069–R1075PubMedCrossRefGoogle Scholar
  4. Angelini G, Gardella S, Ardy M, Ciriolo MR, Filomeni G, Di Trapani G, Clarke F, Sitia R, Rubartelli A (2002) Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc Natl Acad Sci USA 99:1491–1496PubMedCrossRefGoogle Scholar
  5. Aoyama K, Suh SW, Hamby AM, Liu J, Chan WY, Chen Y, Swanson RA (2006) Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci 9:119–126PubMedCrossRefGoogle Scholar
  6. Aoyama K, Watabe M, Nakaki T (2011) Modulation of neuronal glutathione synthesis by EAAC1 and its interacting protein GTRAP3-18. Amino Acids (this issue)Google Scholar
  7. Banjac A, Perisic T, Sato H, Seiler A, Bannai S, Weiss N, Kolle P, Tschoep K, Issels RD, Daniel PT et al (2008) The cystine/cysteine cycle: a redox cycle regulating susceptibility versus resistance to cell death. Oncogene 27:1618–1628PubMedCrossRefGoogle Scholar
  8. Bannai S (1984a) Induction of cystine and glutamate transport activity in human fibroblasts by diethyl maleate and other electrophilic agents. J Biol Chem 259:2435–2440PubMedGoogle Scholar
  9. Bannai S (1984b) Transport of cystine and cysteine in mammalian cells. Biochim Biophys Acta 779:289–306PubMedGoogle Scholar
  10. Bannai S (1986) Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem 261:2256–2263PubMedGoogle Scholar
  11. Bannai S, Kitamura E (1980) Transport interaction of l--cystine and l--glutamate in human diploid fibroblasts in culture. J Biol Chem 255:2372–2376PubMedGoogle Scholar
  12. Bannai S, Kitamura E (1981) Role of proton dissociation in the transport of cystine and glutamate in human diploid fibroblasts in culture. J Biol Chem 256:5770–5772PubMedGoogle Scholar
  13. Bannai S, Kitamura E (1982) Adaptive enhancement of cystine and glutamate uptake in human diploid fibroblasts in culture. Biochim Biophys Acta 721:1–10PubMedCrossRefGoogle Scholar
  14. Bannai S, Tateishi N (1986) Role of membrane transport in metabolism and function of glutathione in mammals. J Membr Biol 89:1–8PubMedCrossRefGoogle Scholar
  15. Bannai S, Christensen HN, Vadgama JV, Ellory JC, Englesberg E, Guidotti GG, Gazzola GC, Kilberg MS, Lajtha A, Sacktor B et al (1984) Amino acid transport systems. Nature 311:308PubMedGoogle Scholar
  16. Bannai S, Sato H, Ishii T, Sugita Y (1989) Induction of cystine transport activity in human fibroblasts by oxygen. J Biol Chem 264:18480–18484PubMedGoogle Scholar
  17. Bannai S, Sato H, Ishii T, Taketani S (1991) Enhancement of glutathione levels in mouse peritoneal macrophages by sodium arsenite, cadmium chloride and glucose/glucose oxidase. Biochim Biophys Acta 1092:175–179PubMedCrossRefGoogle Scholar
  18. Barbosa-Tessmann IP, Chen C, Zhong C, Siu F, Schuster SM, Nick HS, Kilberg MS (2000) Activation of the human asparagine synthetase gene by the amino acid response and the endoplasmic reticulum stress response pathways occurs by common genomic elements. J Biol Chem 275:26976–26985PubMedGoogle Scholar
  19. Bjorkhem-Bergman L, Jonsson K, Eriksson LC, Olsson JM, Lehmann S, Paul C, Bjornstedt M (2002) Drug-resistant human lung cancer cells are more sensitive to selenium cytotoxicity. Effects on thioredoxin reductase and glutathione reductase. Biochem Pharmacol 63:1875–1884PubMedCrossRefGoogle Scholar
  20. Blakytny R, Erkell LJ, Brunner G (2006) Inactivation of active and latent transforming growth factor beta by free thiols: potential redox regulation of biological action. Int J Biochem Cell Biol 38:1363–1373PubMedCrossRefGoogle Scholar
  21. Bridges CC, Hu H, Miyauchi S, Siddaramappa UN, Ganapathy ME, Ignatowicz L, Maddox DM, Smith SB, Ganapathy V (2004) Induction of cystine-glutamate transporter xc− by human immunodeficiency virus type 1 transactivator protein tat in retinal pigment epithelium. Invest Ophthalmol Vis Sci 45:2906–2914PubMedCrossRefGoogle Scholar
  22. Brielmeier M, Bechet JM, Falk MH, Pawlita M, Polack A, Bornkamm GW (1998) Improving stable transfection efficiency: antioxidants dramatically improve the outgrowth of clones under dominant marker selection. Nucleic Acids Res 26:2082–2085PubMedCrossRefGoogle Scholar
  23. Bruhat A, Jousse C, Carraro V, Reimold AM, Ferrara M, Fafournoux P (2000) Amino acids control mammalian gene transcription: activating transcription factor 2 is essential for the amino acid responsiveness of the CHOP promoter. Mol Cell Biol 20:7192–7204PubMedCrossRefGoogle Scholar
  24. Castellani P, Angelini G, Delfino L, Matucci A, Rubartelli A (2008) The thiol redox state of lymphoid organs is modified by immunization: role of different immune cell populations. Eur J Immunol 38:2419–2425PubMedCrossRefGoogle Scholar
  25. Chairoungdua A, Segawa H, Kim JY, Miyamoto K, Haga H, Fukui Y, Mizoguchi K, Ito H, Takeda E, Endou H et al (1999) Identification of an amino acid transporter associated with the cystinuria-related type II membrane glycoprotein. J Biol Chem 274:28845–28848PubMedCrossRefGoogle Scholar
  26. Chen RS, Song YM, Zhou ZY, Tong T, Li Y, Fu M, Guo XL, Dong LJ, He X, Qiao HX et al (2009) Disruption of xCT inhibits cancer cell metastasis via the caveolin-1/beta-catenin pathway. Oncogene 28:599–609PubMedCrossRefGoogle Scholar
  27. Chintala S, Li W, Lamoreux ML, Ito S, Wakamatsu K, Sviderskaya EV, Bennett DC, Park YM, Gahl WA, Huizing M et al (2005) Slc7a11 gene controls production of pheomelanin pigment and proliferation of cultured cells. Proc Natl Acad Sci USA 102:10964–10969PubMedCrossRefGoogle Scholar
  28. Cho Y, Bannai S (1990) Uptake of glutamate and cysteine in C-6 glioma cells and in cultured astrocytes. J Neurochem 55:2091–2097PubMedCrossRefGoogle Scholar
  29. Chung WJ, Lyons SA, Nelson GM, Hamza H, Gladson CL, Gillespie GY, Sontheimer H (2005) Inhibition of cystine uptake disrupts the growth of primary brain tumors. J Neurosci 25:7101–7110PubMedCrossRefGoogle Scholar
  30. Cohen J (2002) The immunopathogenesis of sepsis. Nature 420:885–891PubMedCrossRefGoogle Scholar
  31. Conrad M (2009) Transgenic mouse models for the vital selenoenzymes cytosolic thioredoxin reductase, mitochondrial thioredoxin reductase and glutathione peroxidase 4. Biochim Biophys Acta 1790:1575–1585PubMedCrossRefGoogle Scholar
  32. Deibel RMB, Chedekel MR (1984) Biosynthetic and strcutural Studies on Pheomelanin. J Am Chem Soc 106:5884–5888CrossRefGoogle Scholar
  33. Droge W, Eck HP, Gmunder H, Mihm S (1991) Modulation of lymphocyte functions and immune responses by cysteine and cysteine derivatives. Am J Med 91:140S–144SPubMedCrossRefGoogle Scholar
  34. Falk MH, Meier T, Issels RD, Brielmeier M, Scheffer B, Bornkamm GW (1998) Apoptosis in Burkitt lymphoma cells is prevented by promotion of cysteine uptake. Int J Cancer 75:620–625PubMedCrossRefGoogle Scholar
  35. Feliubadalo L, Font M, Purroy J, Rousaud F, Estivill X, Nunes V, Golomb E, Centola M, Aksentijevich I, Kreiss Y et al (1999) Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo, +AT) of rBAT. Nat Genet 23:52–57PubMedGoogle Scholar
  36. Fogal B, Li J, Lobner D, McCullough LD, Hewett SJ (2007) System x(c)− activity and astrocytes are necessary for interleukin-1 beta-mediated hypoxic neuronal injury. J Neurosci 27:10094–10105PubMedCrossRefGoogle Scholar
  37. Ganapathy V, Thangaraju M, Prasad PD (2009) Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther 121:29–40PubMedCrossRefGoogle Scholar
  38. Garin MI, Chu CC, Golshayan D, Cernuda-Morollon E, Wait R, Lechler RI (2007) Galectin-1: a key effector of regulation mediated by CD4+ CD25+ T cells. Blood 109:2058–2065PubMedCrossRefGoogle Scholar
  39. Gasol E, Jimenez-Vidal M, Chillaron J, Zorzano A, Palacin M (2004) Membrane topology of system xc− light subunit reveals a re-entrant loop with substrate-restricted accessibility. J Biol Chem 279:31228–31236PubMedCrossRefGoogle Scholar
  40. Gmunder H, Eck HP, Benninghoff B, Roth S, Droge W (1990) Macrophages regulate intracellular glutathione levels of lymphocytes. Evidence for an immunoregulatory role of cysteine. Cell Immunol 129:32–46PubMedCrossRefGoogle Scholar
  41. Go YM, Jones DP (2005) Intracellular proatherogenic events and cell adhesion modulated by extracellular thiol/disulfide redox state. Circulation 111:2973–2980PubMedCrossRefGoogle Scholar
  42. Gras G, Samah B, Hubert A et al. (2011) EEAT expression by macrophages and microglia: still more question than answers. Amino Acids (this issue)Google Scholar
  43. Guan J, Lo M, Dockery P, Mahon S, Karp CM, Buckley AR, Lam S, Gout PW, Wang YZ (2009) The xc− cystine/glutamate antiporter as a potential therapeutic target for small-cell lung cancer: use of sulfasalazine. Cancer Chemother Pharmacol 64:463–472PubMedCrossRefGoogle Scholar
  44. Had-Aissouni L (2011a) Maintenance of antioxidant defenses of brain cells: plasma membrane glutamate transporters and beyond. Amino Acids, this issueGoogle Scholar
  45. Had-Aissouni L (2011b) Toward a new role for plasma membrane sodium-dependent glutamate transporters of astrocytes: maintenance of antioxidant defenses beyond extracellular glutamate clearance. Amino Acids, this issueGoogle Scholar
  46. Hayes D, Wiessner M, Rauen T et al (2005) Transport of l-[14C]cystine and l-[14C]cysteine by subtypes of high affinity glutamate transporters over-expressed in HEK cells. Neurochem Int 46:585–594PubMedCrossRefGoogle Scholar
  47. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166PubMedCrossRefGoogle Scholar
  48. Huang Y, Dai Z, Barbacioru C, Sadee W (2005) Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance. Cancer Res 65:7446–7454PubMedCrossRefGoogle Scholar
  49. Ishii T, Bannai S, Sugita Y (1981a) Mechanism of growth stimulation of L1210 cells by 2-mercaptoethanol in vitro. Role of the mixed disulfide of 2-mercaptoethanol and cysteine. J Biol Chem 256:12387–12392PubMedGoogle Scholar
  50. Ishii T, Hishinuma I, Bannai S, Sugita Y (1981b) Mechanism of growth promotion of mouse lymphoma L1210 cells in vitro by feeder layer or 2-mercaptoethanol. J Cell Physiol 107:283–293PubMedCrossRefGoogle Scholar
  51. Ishii T, Sugita Y, Bannai S (1987) Regulation of glutathione levels in mouse spleen lymphocytes by transport of cysteine. J Cell Physiol 133:330–336PubMedCrossRefGoogle Scholar
  52. Ishii T, Nakayama K, Sato H, Miura K, Yamada M, Yamada K, Sugita Y, Bannai S (1991) Expression of the mouse macrophage cystine transporter in Xenopus laevis oocytes. Arch Biochem Biophys 289:71–75PubMedCrossRefGoogle Scholar
  53. Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000) Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 275:16023–16029PubMedCrossRefGoogle Scholar
  54. Itoh K, Tong KI, Yamamoto M (2004) Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med 36:1208–1213PubMedCrossRefGoogle Scholar
  55. Iuchi Y, Kibe N, Tsunoda S, Okada F, Bannai S, Sato H, Fujii J (2008) Deficiency of the cystine-transporter gene, xCT, does not exacerbate the deleterious phenotypic consequences of SOD1 knockout in mice. Mol Cell Biochem 319:125–132PubMedCrossRefGoogle Scholar
  56. Iyer SS, Jones DP, Brigham KL, Rojas M (2009a) Oxidation of plasma cysteine/cystine redox state in endotoxin-induced lung injury. Am J Respir Cell Mol Biol 40:90–98PubMedCrossRefGoogle Scholar
  57. Iyer SS, Ramirez AM, Ritzenthaler JD, Torres-Gonzalez E, Roser-Page S, Mora AL, Brigham KL, Jones DP, Roman J, Rojas M (2009b) Oxidation of extracellular cysteine/cystine redox state in bleomycin-induced lung fibrosis. Am J Physiol Lung Cell Mol Physiol 296:L37–L45PubMedCrossRefGoogle Scholar
  58. Jones DP, Go YM, Anderson CL, Ziegler TR, Kinkade JM Jr, Kirlin WG (2004) Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control. Faseb J 18:1246–1248PubMedGoogle Scholar
  59. Kaleeba JA, Berger EA (2006) Kaposi’s sarcoma-associated herpesvirus fusion-entry receptor: cystine transporter xCT. Science 311:1921–1924PubMedCrossRefGoogle Scholar
  60. Kazama H, Ricci JE, Herndon JM, Hoppe G, Green DR, Ferguson TA (2008) Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29:21–32PubMedCrossRefGoogle Scholar
  61. Lewerenz J, Klein M, Methner A (2006) Cooperative action of glutamate transporters and cystine/glutamate antiporter system Xc− protects from oxidative glutamate toxicity. J Neurochem 98:916–925PubMedCrossRefGoogle Scholar
  62. Lewerenz J, Maher P, Methner A (2011) Regulation of xCT expression and system xc− function in neuronal cells. Amino Acids (this issue)Google Scholar
  63. Li S, Whorton AR (2005) Identification of stereoselective transporters for S-nitroso-l-cysteine: role of LAT1 and LAT2 in biological activity of S-nitrosothiols. J Biol Chem 280:20102–20110PubMedCrossRefGoogle Scholar
  64. Li Y, Maher P, Schubert D (1997) A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron 19:453–463PubMedCrossRefGoogle Scholar
  65. Lillig CH, Holmgren A (2007) Thioredoxin and related molecules—from biology to health and disease. Antioxid Redox Signal 9:25–47PubMedCrossRefGoogle Scholar
  66. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795PubMedCrossRefGoogle Scholar
  67. Lo M, Ling V, Wang YZ, Gout PW (2008a) The xc− cystine/glutamate antiporter: a mediator of pancreatic cancer growth with a role in drug resistance. Br J Cancer 99:464–472PubMedCrossRefGoogle Scholar
  68. Lo M, Wang YZ, Gout PW (2008b) The x(c)− cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol 215:593–602PubMedCrossRefGoogle Scholar
  69. Loscalzo J (2008) Membrane redox state and apoptosis: death by peroxide. Cell Metab 8:182–183PubMedCrossRefGoogle Scholar
  70. Mandal PK, Seiler A, Perisic T, Koelle P, Banjac Canak A, Foester H, Weiss N, Kremmer E, Lieberman MW, Bannai S et al (2010) System xc− and thioredoxin reductase 1 cooperatively rescue glutathione deficiency. J Biol Chem 285:22244–22253PubMedCrossRefGoogle Scholar
  71. Massie A, Schallier A, Kim SW, Fernando R, Kobayashi S, Beck H, De Bundel DD, Vermoessen K, Bannai S, Smolders I, et al. (2010) Dopaminergic neurons of system xc− deficient mice are highly protected against 6-hydroxydopamine-induced toxicity. Faseb J. doi:10.1096/fj.10-177212
  72. McBean G (2011) The transsulfuration pathway: a source of cysteine for glutathione in astrocytes. Amino Acids (this issue)Google Scholar
  73. Miyata M, Smith JD (1996) Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. Nat Genet 14:55–61PubMedCrossRefGoogle Scholar
  74. Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2:1547–1558PubMedCrossRefGoogle Scholar
  75. Murphy TH, Schnaar RL, Coyle JT (1990) Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake. Faseb J 4:1624–1633PubMedGoogle Scholar
  76. Nabeyama A, Kurita A, Asano K, Miyake Y, Yasuda T, Miura I, Nishitai G, Arakawa S, Shimizu S, Wakana S et al (2010) xCT deficiency accelerates chemically induced tumorigenesis. Proc Natl Acad Sci USA 107:6436–6441PubMedCrossRefGoogle Scholar
  77. Okuno S, Sato H, Kuriyama-Matsumura K, Tamba M, Wang H, Sohda S, Hamada H, Yoshikawa H, Kondo T, Bannai S (2003) Role of cystine transport in intracellular glutathione level and cisplatin resistance in human ovarian cancer cell lines. Br J Cancer 88:951–956PubMedCrossRefGoogle Scholar
  78. Olm E, Fernandes AP, Hebert C, Rundlof AK, Larsen EH, Danielsson O, Bjornstedt M (2009) Extracellular thiol-assisted selenium uptake dependent on the x(c)− cystine transporter explains the cancer-specific cytotoxicity of selenite. Proc Natl Acad Sci USA 106:11400–11405PubMedCrossRefGoogle Scholar
  79. Patel SA, Warren BA, Rhoderick JF, Bridges RJ (2004) Differentiation of substrate and non-substrate inhibitors of transport system xc(−): an obligate exchanger of l-glutamate and l-cystine. Neuropharmacology 46:273–284PubMedCrossRefGoogle Scholar
  80. Persson M, Rönnbäck L (2011) Microglial self defence mediated through GLT-1 and glutathione. Amino Acids (this issue)Google Scholar
  81. Pfeiffer R, Loffing J, Rossier G, Bauch C, Meier C, Eggermann T, Loffing-Cueni D, Kuhn LC, Verrey F (1999) Luminal heterodimeric amino acid transporter defective in cystinuria. Mol Biol Cell 10:4135–4147PubMedGoogle Scholar
  82. Qiao HX, Hao CJ, Li Y, He X, Chen RS, Cui J, Xu ZH, Li W (2008) JNK activation mediates the apoptosis of xCT-deficient cells. Biochem Biophys Res Commun 370:584–588PubMedCrossRefGoogle Scholar
  83. Qin S, Colin C, Hinners I, Gervais A, Cheret C, Mallat M (2006) System Xc− and apolipoprotein E expressed by microglia have opposite effects on the neurotoxicity of amyloid-beta peptide 1–40. J Neurosci 26:3345–3356PubMedCrossRefGoogle Scholar
  84. Rajan DP, Kekuda R, Huang W, Wang H, Devoe LD, Leibach FH, Prasad PD, Ganapathy V (1999) Cloning and expression of a b(0,+)-like amino acid transporter functioning as a heterodimer with 4F2hc instead of rBAT. A new candidate gene for cystinuria. J Biol Chem 274:29005–29010PubMedCrossRefGoogle Scholar
  85. Robe PA, Martin D, Albert A, Deprez M, Chariot A, Bours V (2006) A phase 1–2, prospective, double blind, randomized study of the safety and efficacy of Sulfasalazine for the treatment of progressing malignant gliomas: study protocol of [ISRCTN45828668]. BMC Cancer 6:29PubMedCrossRefGoogle Scholar
  86. Robe PA, Martin DH, Nguyen-Khac MT, Artesi M, Deprez M, Albert A, Vanbelle S, Califice S, Bredel M, Bours V (2009) Early termination of ISRCTN45828668, a phase 1/2 prospective, randomized study of sulfasalazine for the treatment of progressing malignant gliomas in adults. BMC Cancer 9:372PubMedCrossRefGoogle Scholar
  87. Rubartelli A, Sitia R (2009) Chemo-metabolic regulation of immune responses by Tregs. Nat Chem Biol 5:709–710PubMedCrossRefGoogle Scholar
  88. Sakakura Y, Sato H, Shiiya A, Tamba M, Sagara J, Matsuda M, Okamura N, Makino N, Bannai S (2007) Expression and function of cystine/glutamate transporter in neutrophils. J Leukoc Biol 81:974–982PubMedCrossRefGoogle Scholar
  89. Sasaki H, Sato H, Kuriyama-Matsumura K, Sato K, Maebara K, Wang H, Tamba M, Itoh K, Yamamoto M, Bannai S (2002) Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J Biol Chem 277:44765–44771PubMedCrossRefGoogle Scholar
  90. Sato H, Fujiwara K, Sagara J, Bannai S (1995a) Induction of cystine transport activity in mouse peritoneal macrophages by bacterial lipopolysaccharide. Biochem J 310:547–551PubMedGoogle Scholar
  91. Sato H, Takenaka Y, Fujiwara K, Yamaguchi M, Abe K, Bannai S (1995b) Increase in cystine transport activity and glutathione level in mouse peritoneal macrophages exposed to oxidized low-density lipoprotein. Biochem Biophys Res Commun 215:154–159PubMedCrossRefGoogle Scholar
  92. Sato H, Tamba M, Ishii T, Bannai S (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274:11455–11458PubMedCrossRefGoogle Scholar
  93. Sato H, Tamba M, Kuriyama-Matsumura K, Okuno S, Bannai S (2000) Molecular cloning and expression of human xCT, the light chain of amino acid transport system xc−. Antioxid Redox Signal 2:665–671PubMedCrossRefGoogle Scholar
  94. Sato H, Kuriyama-Matsumura K, Hashimoto T, Sasaki H, Wang H, Ishii T, Mann GE, Bannai S (2001) Effect of oxygen on induction of the cystine transporter by bacterial lipopolysaccharide in mouse peritoneal macrophages. J Biol Chem 276:10407–10412PubMedCrossRefGoogle Scholar
  95. Sato H, Tamba M, Okuno S, Sato K, Keino-Masu K, Masu M, Bannai S (2002) Distribution of cystine/glutamate exchange transporter, system x(c)−, in the mouse brain. J Neurosci 22:8028–8033PubMedGoogle Scholar
  96. Sato H, Nomura S, Maebara K, Sato K, Tamba M, Bannai S (2004) Transcriptional control of cystine/glutamate transporter gene by amino acid deprivation. Biochem Biophys Res Commun 325:109–116PubMedCrossRefGoogle Scholar
  97. Sato H, Shiiya A, Kimata M, Maebara K, Tamba M, Sakakura Y, Makino N, Sugiyama F, Yagami K, Moriguchi T et al (2005) Redox imbalance in cystine/glutamate transporter-deficient mice. J Biol Chem 280:37423–37429PubMedCrossRefGoogle Scholar
  98. Savaskan NE, Heckel A, Hahnen E, Engelhorn T, Doerfler A, Ganslandt O, Nimsky C, Buchfelder M, Eyupoglu IY (2008) Small interfering RNA-mediated xCT silencing in gliomas inhibits neurodegeneration and alleviates brain edema. Nat Med 14:629–632PubMedCrossRefGoogle Scholar
  99. Schubert D, Kimura H, Maher P (1992) Growth factors and vitamin E modify neuronal glutamate toxicity. Proc Natl Acad Sci USA 89:8264–8267PubMedCrossRefGoogle Scholar
  100. Schumacker PT (2006) Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10:175–176PubMedCrossRefGoogle Scholar
  101. Seiler A, Schneider M, Forster H, Roth S, Wirth EK, Culmsee C, Plesnila N, Kremmer E, Radmark O, Wurst W et al (2008) Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab 8:237–248PubMedCrossRefGoogle Scholar
  102. Shi ZZ, Osei-Frimpong J, Kala G, Kala SV, Barrios RJ, Habib GM, Lukin DJ, Danney CM, Matzuk MM, Lieberman MW (2000) Glutathione synthesis is essential for mouse development but not for cell growth in culture. Proc Natl Acad Sci USA 97:5101–5106PubMedCrossRefGoogle Scholar
  103. Shibasaki T, Iuchi Y, Okada F, Kuwata K, Yamanobe T, Bannai S, Tomita Y, Sato H, Fujii J (2009) Aggravation of ischemia-reperfusion-triggered acute renal failure in xCT-deficient mice. Arch Biochem Biophys 490:63–69PubMedCrossRefGoogle Scholar
  104. Shih AY, Erb H, Sun X, Toda S, Kalivas PW, Murphy TH (2006) Cystine/glutamate exchange modulates glutathione supply for neuroprotection from oxidative stress and cell proliferation. J Neurosci 26:10514–10523PubMedCrossRefGoogle Scholar
  105. Sims B, Clarke M, Njah W, Hopkins ES, Sontheimer H (2010) Erythropoietin-induced neuroprotection requires cystine glutamate exchanger activity. Brain Res 1321:88–95PubMedCrossRefGoogle Scholar
  106. Sontheimer H (2003) Malignant gliomas: perverting glutamate and ion homeostasis for selective advantage. Trends Neurosci 26:543–549PubMedCrossRefGoogle Scholar
  107. Sontheimer H (2008) A role for glutamate in growth and invasion of primary brain tumors. J Neurochem 105:287–295PubMedCrossRefGoogle Scholar
  108. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70:68–77PubMedCrossRefGoogle Scholar
  109. Taguchi K, Tamba M, Bannai S, Sato H (2007) Induction of cystine/glutamate transporter in bacterial lipopolysaccharide induced endotoxemia in mice. J Inflamm Lond 4:20PubMedCrossRefGoogle Scholar
  110. Takada A, Bannai S (1984) Transport of cystine in isolated rat hepatocytes in primary culture. J Biol Chem 259:2441–2445PubMedGoogle Scholar
  111. Tassi S, Carta S, Vene R, Delfino L, Ciriolo MR, Rubartelli A (2009) Pathogen-induced interleukin-1beta processing and secretion is regulated by a biphasic redox response. J Immunol 183:1456–1462PubMedCrossRefGoogle Scholar
  112. Tobaben S, Grohm J, Seiler A, Conrad M, Plesnila N, Culmsee C (2011) Bid-mediated mitochondrial damage is a key mechanism in glutamate-induced oxidative stress and AIF-dependent cell death in immortalized HT-22 hippocampal neurons. Cell Death Differ 18:282–292PubMedCrossRefGoogle Scholar
  113. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591PubMedCrossRefGoogle Scholar
  114. van Leyen K, Kim HY, Lee SR, Jin G, Arai K, Lo EH (2006) Baicalein and 12/15-lipoxygenase in the ischemic brain. Stroke 37:3014–3018PubMedCrossRefGoogle Scholar
  115. Van Winkle LJ, Campione AL, Gorman JM (1988) Na+-independent transport of basic and zwitterionic amino acids in mouse blastocysts by a shared system and by processes which distinguish between these substrates. J Biol Chem 263:3150–3163PubMedGoogle Scholar
  116. Vene R, Delfino L, Castellani P, Balza E, Bertolotti M, Sitia R, Rubartelli A (2010) Redox remodeling allows and controls B cell activation and differentiation. Antioxid Redox Signal 13:1145–1155PubMedCrossRefGoogle Scholar
  117. Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, Kanai Y (2004) CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch 447:532–542PubMedCrossRefGoogle Scholar
  118. Wagner CA, Lang F, Broer S (2001) Function and structure of heterodimeric amino acid transporters. Am J Physiol Cell Physiol 281:C1077–C1093PubMedGoogle Scholar
  119. Watanabe H, Bannai S (1987) Induction of cystine transport activity in mouse peritoneal macrophages. J Exp Med 165:628–640PubMedCrossRefGoogle Scholar
  120. Yan Z, Garg SK, Kipnis J, Banerjee R (2009) Extracellular redox modulation by regulatory T cells. Nat Chem Biol 5:721–723PubMedCrossRefGoogle Scholar
  121. Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59:4383–4391PubMedGoogle Scholar
  122. Zerangue N, Kavanaugh MP (1996) Interaction of l-cysteine with a human excitatory amino acid transporter. J Physiol 493:419–423PubMedGoogle Scholar
  123. Zhu J, Li S, Marshall ZM, Whorton AR (2008) A cystine-cysteine shuttle mediated by xCT facilitates cellular responses to S-nitrosoalbumin. Am J Physiol Cell Physiol 294:C1012–C1020PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.DZNE, German Center for Neurodegenerative Diseases, MunichMunichGermany
  2. 2.Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental GeneticsNeuherbergGermany
  3. 3.Department of Food and Applied Life SciencesFaculty of Agriculture, Yamagata UniversityYamagataJapan

Personalised recommendations