Advertisement

Amino Acids

, Volume 42, Issue 4, pp 1339–1348 | Cite as

Chemoenzymatic routes to enantiomerically pure 2-azatyrosine and 2-, 3- and 4-pyridylalanine derivatives

  • Amer Moussa
  • Patrick MeffreEmail author
  • Jean Martinez
  • Valérie Rolland
Original Article

Abstract

Enantiomerically pure 2-, 3- or 4-pyridylalanine (pya) and 2-azatyrosine (azatyr) are known to present various biological activities. After incorporation into appropriate peptide sequences, these heterocyclic non natural α-amino acids could behave as new substrates or inhibitors of elastase from Pseudomonas aeruginosa. This enzyme is known to be involved in nosocomial infections and infections related to the cystic fibrosis disease. New efficient chemoenzymatic preparations of those compounds using α-chymotrypsin (α-CT) are presented.

Keywords

Heterocyclic α-amino acids Pyridyl alanine Azatyrosine Chemoenzymatic route Pseudomonas aeruginosa elastase 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adamczyk M, Akireddy SR, Reddy RE (2001) Enantioselective synthesis of (2-Pyridyl)alanines via catalytic hydrogenation and application to the synthesis of l-azatyrosine. Org Lett 3:3157–3159PubMedCrossRefGoogle Scholar
  2. Agafonova GA, Gerasimova NE, Guseva MV, Krainova BL, Petrova TV, Pozdnev VF, Chaman ES (1970) Peptides with unnatural amino acids. I. β-Pyridyl-α-alanines and their N-acyl derivatives. Zhurnal Obshchei Khimii 40:2502–2507Google Scholar
  3. Bouifraden S, Drouot C, El Hadrami M, Guenoun F, Lecointe L, Mai N, Paris M, Pothion C, Sadoune M, Sauvagnat B, Amblard M, Aubagnac JL, Calmes M, Chevallet P, Daunis J, Enjalbal C, Fehrentz JA, Lamaty F, Lavergne JP, Lazaro R, Rolland V, Roumestant ML, Viallefont P, Vidal Y, Martinez J (1999) Some of the amino acid chemistry going on in the laboratory of amino acids, peptides, and proteins. Amino Acids 16:345–379PubMedCrossRefGoogle Scholar
  4. Cooper MS, Seton AW, Stevens MFG, Westwell AD (1996) A concise synthesis of either enantiomer of azatyrosine. Bioorg Med Chem Lett 6:2613–2616CrossRefGoogle Scholar
  5. Croce PD, La Rosa C, Pizzatti E (2000) Stereoselective synthesis of 3-heteroaromatic-substituted alanines. Tetrahedron Asymmetr 11:2635–2642CrossRefGoogle Scholar
  6. Doebler C, Kreuzfeld HJ, Michalik M, Krause HW (1996) Unusual amino acids. VII. Asymmetric synthesis of 3- and 4-pyridylalanines. Tetrahedron Asymmetr 7:117–125CrossRefGoogle Scholar
  7. Dondoni A, Massi A, Minghini E, Sabbatini S, Bertolasi V (2003) Model studies toward the synthesis of dihydropyrimidinyl and pyridyl α-amino acids via three-component biginelli and hantzsch cyclocondensations. J Org Chem 68:6172–6183PubMedCrossRefGoogle Scholar
  8. Hoes C, Raap J, Bloemhoff W, Kerling KET (1980) Studies on polypeptides. XXXII. Solid-phase synthesis of RNase S-peptide 1–14 analogs; replacement of histidine-12 by β-(2-pyridyl)-l-alanine and β-(4-pyridyl)-l-alanine. Recueil des Travaux Chimiques des Pays-Bas 99:99–104CrossRefGoogle Scholar
  9. Inouye S, Shomura T, Tsuruoka T, Ogawa Y, Watanabe H (1975) L-β-(5-Hydroxy-2-pyridyl)alanine and L-β-(3-hydroxyureido)alanine from Streptomyces. Chem Pharmac bull 23:2669–2677CrossRefGoogle Scholar
  10. Izawa M, Takayama S, Shindo-Okada N, Dói S, Kimura M, Katsuki M, Nishimura S (1992) Inhibition of chemical carcinogenesis in vivo by azatyrosine. Cancer Res 52:1628–1630PubMedGoogle Scholar
  11. Lecointe L, Rolland-Fulcrand V, Roumestant ML, Viallefont P, Martinez J (1998) Chemoenzymic synthesis of the two enantiomers of 7-azatryptophan. Tetrahedron Asymmetr 9:1753–1758CrossRefGoogle Scholar
  12. Lecointe L, Rolland V, Pappalardo L, Roumestant ML, Viallefont P, Martinez J (2000) Diastereoselective synthesis of non-proteinogenic α-amino acids. J Peptide Res Off J Am Peptide Soc 55:300–307Google Scholar
  13. Miranda MTM, Tominaga M (1991) Thermolysin as a catalyst in enzymic synthesis of asparagine-containing peptides II. Int J Pept Protein Res 37:128–133PubMedCrossRefGoogle Scholar
  14. Pappalardo L, Receveur JM, Rolland V, Sadoune M, Vidal Y, Viallefont P, Roumestant ML (1999) Synthesis of enantiomerically pure amino acids. Rec Res Dev Synt Org Chem 2:35–47Google Scholar
  15. Riechmann L, Kasche V (1986) Reaction mechanism, specificity and pH-dependence of peptide synthesis catalyzed by the metalloproteinase thermolysin. Biochim Biophys Acta 872:269–276PubMedCrossRefGoogle Scholar
  16. Rival S, Besson C, Saulnier J, Wallach J (1999) Dipeptide derivative synthesis catalyzed by Pseudomonas aeruginosa elastase. J Peptide Res 53:170–176CrossRefGoogle Scholar
  17. Rolland-Fulcrand V, Haroune N, Roumestant ML, Martinez J (2000) Efficient chemoenzymatic synthesis of enantiomerically pure β-heterocyclic amino acid derivatives. Tetrahedron Asymmetr 11:4719–4724CrossRefGoogle Scholar
  18. Shimeno H, Soeda S, Nagamatsu A (1977) Anti-inflammatory activities of pyridylalanine analogs and their influences on the anti-inflammatory action of cortisone. Chem Pharm Bull 25:2983–2987PubMedCrossRefGoogle Scholar
  19. Shindo-Okada N, Makabe O, Nagahara H, Nishimura S (1989) Permanent conversion of mouse and human cells transformed by activated ras or raf genes to apparently normal cells by treatment with the antibiotic azatyrosine. Mol Carcinog 2:159–167PubMedCrossRefGoogle Scholar
  20. Sullivan PT, Kester M, Norton SJ (1968) Synthesis and study of pyridylalanine N-oxide. J Med Chem 11:1172–1176PubMedCrossRefGoogle Scholar
  21. Tabanella S, Valancogne I, Jackson RFW (2003) Preparation of enantiomerically pure pyridyl amino acids from serine. Org Biomol Chem 1:4254–4261PubMedCrossRefGoogle Scholar
  22. Tararov VI, Belokon YN, Singh A, Parmar VS (1997) Enantioselective hydrolysis of diethyl acetamidomalonate catalyzed by α-chymotrypsin. Tetrahedron Asymmetr 8:33–36CrossRefGoogle Scholar
  23. Application: US, US Patent, 83-479645, 4504414, 1985Google Scholar
  24. Van Batenburg OD, Voskuyl-Holtkamp I, Schattenkerk C, Hoes K, Kerling KET, Havinga E (1977) The role of the imidazolyl nitrogen atoms of histidine-12 in ribonuclease S. Biochem J 163:385–387PubMedGoogle Scholar
  25. Walker MA, Kaplita KP, Chen T, King DH (1997) Synthesis of all three regioisomers of pyridylalanine. Synlett 2:169–170CrossRefGoogle Scholar
  26. Wang W, Cai M, Xiong C, Zhang J, Trivedi D, Hruby VJ (2002) Design and synthesis of novel χ2-constrained phenylalanine, naphthylalanine and tryptophan analogs and their use in biologically active melanotropin peptides. Tetrahedron 58:7365–7374CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Amer Moussa
    • 1
  • Patrick Meffre
    • 1
    • 2
    Email author
  • Jean Martinez
    • 1
  • Valérie Rolland
    • 1
  1. 1.IBMM-UMR 5247-CNRSUniversités Montpellier 1 et 2Montpellier Cedex 5France
  2. 2.Laboratoire de ChimieBioOrganique-LCBOUniversite de NimesNîmesFrance

Personalised recommendations