Advertisement

Amino Acids

, Volume 42, Issue 4, pp 1253–1260 | Cite as

Analysis of oligo-arginine cell-permeable peptides uptake by prostate cells

  • Jian Zhou
  • Wei Liu
  • Rey-Chen Pong
  • Guiyang Hao
  • Xiankai Sun
  • Jer-Tsong HsiehEmail author
Original Article

Abstract

Recently, we have shown that oligo-arginine peptide (i.e., R11), a unique cell-permeable peptide (CPP), can be used as an imaging probe for prostate cancer detection. In this study, the mechanism(s) of oligo-arginine peptide in prostate cells was further analyzed. The length of the oligo-arginine peptide appears to be critical for the efficiency of uptake by prostate cells: poly (11)-arginine (R11) > poly (9)-arginine (R9) > poly (13)-arginine peptide (R13). The uptake of R11 peptide by prostate cells is mediated by macropinocytosis as evidenced by the fact that uptake can be blocked by a macropinocytosis inhibitor. However, the use of an inhibitor for carbohydrate chain elongation of glycosaminoglycan or inhibitors for carbohydrate synthesis of glycoprotein via either O-link or N-link showed minimal effects on R11 uptake. Nevertheless, pentosan sulfate (PentS) or dextran sulfate (DS) exhibited the highest inhibitory effect on R11 uptake in several prostate cells treated with various soluble glycosaminoglycans (GAGs) or anionic polymers. It is known that laminin receptor has been characterized as a PentS binding partner. Knocking down 37LRP (laminin receptor precursor) expression in prostate cells showed a reduction in their ability to uptake R11 peptides. In conclusion, laminin receptor is one of the initial binding site(s) responsible for R11 peptide uptake in prostate cells.

Keywords

Oligo-arginine peptide Cell-permeable peptide Laminin receptor Prostate cells 

Notes

Acknowledgments

We thank Ms. Crystal Gore for the editorial assistance. This work was partially supported by the Prostate Cancer Research Program of the United States Army Medical Research and Materiel Command (W81XWH-08-1-0305 and W81XWH-04-1-0222) and a Clinical Innovator Award from the Flight Attendant Medical Research Institute. The authors declare that they have no conflict of interest.

Supplementary material

726_2010_817_MOESM1_ESM.doc (54 kb)
Supplementary material (DOC 54 kb)

References

  1. Annabi B, Currie JC, Bouzeghrane M, Dulude H, Daigneault L, Garde S, Rabbani SA, Panchal C, Wu JJ, Beliveau R (2006) Contribution of the 37-kDa laminin receptor precursor in the anti-metastatic PSP94-derived peptide PCK3145 cell surface binding. Biochem Biophys Res Commun 346(1):358–366PubMedCrossRefGoogle Scholar
  2. Deshpande PB et al (2008) Process for the preparation of pentosan polysulfate or salts thereof. In: W.I.P. Organization (ed) India, p 23Google Scholar
  3. Drin G, Cottin S, Blanc E, Rees AR, Temsamani J (2003) Studies on the internalization mechanism of cationic cell-penetrating peptides. J Biol Chem 278(33):31192–31201PubMedCrossRefGoogle Scholar
  4. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55(6):1189–1193PubMedCrossRefGoogle Scholar
  5. Fretz MM, Penning NA, Al-Taei S, Futaki S, Takeuchi T, Nakase I, Storm G, Jones AT (2007) Temperature-, concentration- and cholesterol-dependent translocation of l- and d-octa-arginine across the plasma and nuclear membrane of CD34+ leukaemia cells. Biochem J 403(2):335–342PubMedCrossRefGoogle Scholar
  6. Futaki S, Nakase I, Tadokoro A, Takeuchi T, Jones AT (2007) Arginine-rich peptides and their internalization mechanisms. Biochem Soc Trans 35(Pt 4):784–787PubMedGoogle Scholar
  7. Gala FA, Morrison SL (2002) The role of constant region carbohydrate in the assembly and secretion of human IgD and IgA1. J Biol Chem 277(32):29005–29011PubMedCrossRefGoogle Scholar
  8. Gauczynski S, Peyrin JM, Haik S, Leucht C, Hundt C, Rieger R, Krasemann S, Deslys JP, Dormont D, Lasmezas CI, Weiss S (2001) The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J 20(21):5863–5875PubMedCrossRefGoogle Scholar
  9. Hao G, Zhou J, Gao Y, Long MA, Anthony T, Stanfield J, Hsieh JT, Sun X (2010) A cell permeable peptide analog as a potential specific PET imaging probe for prostate cancer detection. Amino Acids. doi: 10.1007/s00726-010-0515-5
  10. Joliot A, Pernelle C, Deagostini-Bazin H, Prochiantz A (1991) Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci USA 88(5):1864–1868PubMedCrossRefGoogle Scholar
  11. Keller KE, Bradley JM, Kelley MJ, Acott TS (2008) Effects of modifiers of glycosaminoglycan biosynthesis on outflow facility in perfusion culture. Invest Ophthalmol Vis Sci 49(6):2495–2505PubMedCrossRefGoogle Scholar
  12. Kim KJ, Chung JW, Kim KS (2005) 67-kDa laminin receptor promotes internalization of cytotoxic necrotizing factor 1-expressing Escherichia coli K1 into human brain microvascular endothelial cells. J Biol Chem 280(2):1360–1368PubMedCrossRefGoogle Scholar
  13. Malecki J, Wesche J, Skjerpen CS, Wiedlocha A, Olsnes S (2004) Translocation of FGF-1 and FGF-2 across vesicular membranes occurs during G1-phase by a common mechanism. Mol Biol Cell 15(2):801–814PubMedCrossRefGoogle Scholar
  14. Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 56(5):318–325PubMedCrossRefGoogle Scholar
  15. Nakase I, Tadokoro A, Kawabata N, Takeuchi T, Katoh H, Hiramoto K, Negishi M, Nomizu M, Sugiura Y, Futaki S (2007) Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochemistry 46(2):492–501PubMedCrossRefGoogle Scholar
  16. Nelson J, McFerran NV, Pivato G, Chambers E, Doherty C, Steele D, Timson DJ (2008) The 67 kDa laminin receptor: structure, function and role in disease. Biosci Rep 28(1):33–48PubMedCrossRefGoogle Scholar
  17. Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278(1):585–590PubMedCrossRefGoogle Scholar
  18. Richard JP, Melikov K, Brooks H, Prevot P, Lebleu B, Chernomordik LV (2005) Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J Biol Chem 280(15):15300–15306PubMedCrossRefGoogle Scholar
  19. Rieger R, Edenhofer F, Lasmezas CI, Weiss S (1997) The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nat Med 3(12):1383–1388PubMedCrossRefGoogle Scholar
  20. Thoren PE, Persson D, Karlsson M, Norden B (2000) The Antennapedia peptide penetratin translocates across lipid bilayers—the first direct observation. FEBS Lett. 482(3):265–268PubMedCrossRefGoogle Scholar
  21. Tio PH, Jong WW, Cardosa MJ (2005) Two dimensional VOPBA reveals laminin receptor (LAMR1) interaction with dengue virus serotypes 1, 2 and 3. Virol J 2:25PubMedCrossRefGoogle Scholar
  22. Tyagi M, Rusnati M, Presta M, Giacca M (2001) Internalization of HIV-1 Tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276(5):3254–3261PubMedCrossRefGoogle Scholar
  23. Vana K, Zuber C, Pflanz H, Kolodziejczak D, Zemora G, Bergmann AK, Weiss S (2009) LRP/LR as an alternative promising target in therapy of prion diseases, Alzheimer’s disease and cancer. Infect Disord Drug Targets 9(1):69–80PubMedGoogle Scholar
  24. Vendeville A, Rayne F, Bonhoure A, Bettache N, Montcourrier P, Beaumelle B (2004) HIV-1 Tat enters T cells using coated pits before translocating from acidified endosomes and eliciting biological responses. Mol Biol Cell 15(5):2347–2360PubMedCrossRefGoogle Scholar
  25. Wang KS, Kuhn RJ, Strauss EG, Ou S, Strauss JH (1992) High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J Virol 66(8):4992–5001PubMedGoogle Scholar
  26. Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 97(24):13003–13008PubMedCrossRefGoogle Scholar
  27. Zhou J, Hernandez G, Tu SW, Huang CL, Tseng CP, Hsieh JT (2005) The mechanism of antiandrogen effect of DOC-2/DAB2 on androgen receptor-mediated cell growth in androgen independent prostate cancer. Cancer Res 65(21):9906–9913CrossRefGoogle Scholar
  28. Zhou J, Fan J, Hsieh JT (2006) Inhibition of mitogens-elicited signal transduction and growth in prostate cancer with a small peptide derived from the functional domain of DOC-2/DAB2 delivered by a unique vehicle. Cancer Res 66(18):8954–8958PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jian Zhou
    • 1
  • Wei Liu
    • 2
  • Rey-Chen Pong
    • 1
  • Guiyang Hao
    • 2
  • Xiankai Sun
    • 2
    • 3
  • Jer-Tsong Hsieh
    • 1
    • 4
    Email author
  1. 1.Department of Urology, J8-134UT Southwestern Medical Center at DallasDallasUSA
  2. 2.Department of RadiologyUT Southwestern Medical Center at DallasDallasUSA
  3. 3.Department of Advance Imaging Research CenterUT Southwestern Medical Center at DallasDallasUSA
  4. 4.Graduate Institute of Cancer BiologyChina Medical University and HospitalTaichung 404Taiwan, Republic of China

Personalised recommendations