Advertisement

Amino Acids

, Volume 42, Issue 1, pp 347–360 | Cite as

Lysine transporters in human trypanosomatid pathogens

  • Ehud Inbar
  • Gaspar E. Canepa
  • Carolina Carrillo
  • Fabian Glaser
  • Marianne Suter Grotemeyer
  • Doris Rentsch
  • Dan ZilbersteinEmail author
  • Claudio A. Pereira
Original Article

Abstract

In previous studies we characterized arginine transporter genes from Trypanosoma cruzi and Leishmania donovani, the etiological agents of chagas disease and kala azar, respectively, both fatal diseases in humans. Unlike arginine transporters in higher eukaryotes that transport also lysine, these parasite transporters translocate only arginine. This phenomenon prompted us to identify and characterize parasite lysine transporters. Here we demonstrate that LdAAP7 and TcAAP7 encode lysine-specific permeases in L. donovani and T. cruzi, respectively. These two lysine permeases are both members of the large amino acid/auxin permease family and share certain biochemical properties, such as specificity and Km. However, we evidence that LdAAP7 and TcAAP7 differ in their regulation and localization, such differences are likely a reflection of the dissimilar L. donovani and T. cruzi life cycles. Failed attempts to delete both alleles of LdAAP7 support the premise that this is an essential gene that encodes the only lysine permeases expressed in L. donovani promastigotes and T. cruzi epimastigotes, respectively.

Keywords

Lysine transport Amino acid transport Leishmania Trypanosoma 

Notes

Acknowledgments

We thank Professor Isabel Roditi for knockout constructs and Ronit Zilberstein-Levy for editing this manuscript. This work was supported by grant number 402/08 from The Israel Science Foundation founded by The Academy of Sciences and Humanities and by grant number CRSII3 127300 from the Swiss National Science Foundation by grants from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 2010 0685) and Agencia Nacional de Promoción Científica y Tecnológica (FONCyT PICT 2005 33431 and PICT 2008 1209). C.A.P. and C.C. are members of the career of scientific investigator of CONICET (Argentina), and G.E.C. is research fellow from CONICET. The study is dedicated to my dear friend Professor Mariano Levin.

References

  1. Akerman M, Shaked-Mishan P, Mazareb S, Volpin H, Zilberstein D (2004) Novel motifs in amino acid permease genes from Leishmania. Biochem Biophys Res Commun 325(1):353–366PubMedCrossRefGoogle Scholar
  2. Azevedo RA, Arruda P, Turner WL, Lea PJ (1997) The biosynthesis and metabolism of the aspartate derived amino acids in higher plants. Phytochemistry 46(3):395–419PubMedCrossRefGoogle Scholar
  3. Barak E, Amin-Spector S, Gerliak E, Goyard S, Holland N, Zilberstein D (2005) Differentiation of Leishmania donovani in host-free system: analysis of signal perception and response. Mol Biochem Parasitol 141(1):99–108PubMedCrossRefGoogle Scholar
  4. Barrett MP, Burchmore RJ, Stich A, Lazzari JO, Frasch AC, Cazzulo JJ, Krishna S (2003) The trypanosomiases. Lancet 362(9394):1469–1480PubMedCrossRefGoogle Scholar
  5. Blum JJ (1996) Effects of osmotic stress on metabolism, shape, and amino acid content of Leishmania. Biol Cell 87(1–2):9–16PubMedCrossRefGoogle Scholar
  6. Boucherie H (1985) Protein synthesis during transition and stationary phases under glucose limitation in saccharomyces cerevisiae. J Bacteriol 161(1):385–392PubMedGoogle Scholar
  7. Bouvier LA, Silber AM, Galvao Lopes C, Canepa GE, Miranda MR, Tonelli RR, Colli W, Alves MJ, Pereira CA (2004) Post genomic analysis of permeases from the amino acid/auxin family in protozoan parasites. Biochem Biophys Res Commun 321(3):547–556PubMedCrossRefGoogle Scholar
  8. Braun EL, Fuge EK, Padilla PA, Werner-Washburne M (1996) A stationary-phase gene in Saccharomyces cerevisiae is a member of a novel, highly conserved gene family. J Bacteriol 178(23):6865–6872PubMedGoogle Scholar
  9. Busch W, Saier MH Jr (2003) The iubmb-endorsed transporter classification system. Methods Mol Biol 227:21–36PubMedGoogle Scholar
  10. Camargo EP (1964) Growth and differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop Sao Paulo 6:93–100PubMedGoogle Scholar
  11. Canepa GE, Silber AM, Bouvier LA, Pereira CA (2004) Biochemical characterization of a low-affinity arginine permease from the parasite Trypanosoma cruzi. FEMS Microbiol Lett 236(1):79–84PubMedCrossRefGoogle Scholar
  12. Canepa GE, Bouvier LA, Urias U, Miranda MR, Colli W, Alves MJ, Pereira CA (2005) Aspartate transport and metabolism in the protozoan parasite Trypanosoma cruzi. FEMS Microbiol Lett 247(1):65–71PubMedCrossRefGoogle Scholar
  13. Canepa GE, Bouvier LA, Miranda MR, Uttaro AD, Pereira CA (2009) Characterization of Trypanosoma cruzi l-cysteine transport mechanisms and their adaptive regulation. FEMS Microbiol Lett 292(1):27–32PubMedCrossRefGoogle Scholar
  14. Carrillo C, Canepa GE, Giacometti A, Bouvier LA, Miranda MR, de los Milagros Camara M, Pereira CA (2010) Trypanosoma cruzi amino acid transporter Tcaaap411 mediates arginine uptake in yeasts. FEMS Microbiol Lett 306(2):97–102PubMedCrossRefGoogle Scholar
  15. Christensen HN (1990) Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 70(1):43–77PubMedGoogle Scholar
  16. Closs EI, Albritton LM, Kim JW, Cunningham JM (1993) Identification of a low affinity, high capacity transporter of cationic amino acids in mouse liver. J Biol Chem 268(10):7538–7544PubMedGoogle Scholar
  17. Cruz A, Coburn CM, Beverley SM (1991) Double targeted gene replacement for creating null mutants. Proc Natl Acad Sci USA 88(16):7170–7174PubMedCrossRefGoogle Scholar
  18. da Silva R, Sacks DL (1987) Metacyclogenesis is a major determinant of Leishmania promastigote virulence and attenuation. Infect Immun 55(11):2802–2806PubMedGoogle Scholar
  19. Darlyuk I, Goldman A, Roberts SC, Ullman B, Rentsch D, Zilberstein D (2009) Arginine homeostasis and transport in the human pathogen Leishmania donovani. J Biol Chem 284:19800–19807PubMedCrossRefGoogle Scholar
  20. Dixon M, Webb EC (1964) Enzymes. Longmans Green & Co., London, pp 67–70Google Scholar
  21. Do CB, Mahabhashyam MS, Brudno M, Batzoglou S (2005) Probcons: probabilistic consistency-based multiple sequence alignment. Genome Res 15(2):330–340PubMedCrossRefGoogle Scholar
  22. Dohmen RJ, Strasser AW, Honer CB, Hollenberg CP (1991) An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. yeast 7(7):691–692PubMedCrossRefGoogle Scholar
  23. Field MC, Carrington M (2009) The trypanosome flagellar pocket. Nat Rev Microbiol 7(11):775–786PubMedCrossRefGoogle Scholar
  24. Fischer WN, Loo DD, Koch W, Ludewig U, Boorer KJ, Tegeder M, Rentsch D, Wright EM, Frommer WB (2002) Low and high affinity amino acid H+-cotransporters for cellular import of neutral and charged amino acids. Plant J 29(6):717–731PubMedCrossRefGoogle Scholar
  25. Galili G, Amir R, Hoefgen R, Hesse H (2005) Improving the levels of essential amino acids and sulfur metabolites in plants. Biol Chem 386(9):817–831PubMedCrossRefGoogle Scholar
  26. Gaur U, Roberts SC, Dalvi RP, Corraliza I, Ullman B, Wilson ME (2007) An effect of parasite-encoded arginase on the outcome of murine cutaneous leishmaniasis. J Immunol 179(12):8446–8453PubMedGoogle Scholar
  27. Ginger ML (2006) Niche metabolism in parasitic protozoa. Philos Trans R Soc Lond B Biol Sci 361(1465):101–118PubMedCrossRefGoogle Scholar
  28. Goldberg AL, St John AC (1976) Intracellular protein degradation in mammalian and bacterial cells: part 2. Annu Rev Biochem 45:747–803PubMedCrossRefGoogle Scholar
  29. Hasne MP, Coppens I, Soysa R, Ullman B (2010) A high-affinity putrescine-cadaverine transporter from Trypanosoma cruzi. Mol Microbiol 76(1):78–91PubMedCrossRefGoogle Scholar
  30. Hatzoglou M, Fernandez J, Yaman I (2004) Regulation of cationic amino acid transport: The story of the cat-1 transporter. Annu Rev Nutr 24:377–399PubMedCrossRefGoogle Scholar
  31. Herwaldt BL (1999) Leishmaniasis. Lancet 354(9185):1191–1199PubMedCrossRefGoogle Scholar
  32. Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8:460PubMedCrossRefGoogle Scholar
  33. Ito K, Groudine M (1997) A new member of the cationic amino acid transporter family is preferentially expressed in adult mouse brain. J Biol Chem 272(42):26780–26786PubMedCrossRefGoogle Scholar
  34. Jackson AP (2007) Origins of amino acid transporter loci in trypanosomatid parasites. BMC Evol Biol 7:26PubMedCrossRefGoogle Scholar
  35. Jiang Y, Roberts SC, Jardim A, Carter NS, Shih S, Ariyanayagam M, Fairlamb AH, Ullman B (1999) Ornithine decarboxylase gene deletion mutants of Leishmania donovani. J Biol Chem 274(6):3781–3788PubMedCrossRefGoogle Scholar
  36. Kandpal M, Fouce RB, Pal A, Guru PY, Tekwani BL (1995) Kinetics and molecular characteristics of arginine transport by Leishmania donovani promastigotes. Mol Biochem Parasitol 71(2):193–201PubMedCrossRefGoogle Scholar
  37. Kim JW, Closs EI, Albritton LM, Cunningham JM (1991) Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature 352(6337):725–728PubMedCrossRefGoogle Scholar
  38. LeBowitz JH, Coburn CM, McMahon-Pratt D, Beverley SM (1990) Development of a stable Leishmania expression vector and application to the study of parasite surface antigen genes. Proc Natl Acad Sci USA 87(24):9736–9740PubMedCrossRefGoogle Scholar
  39. Malandro MS, Kilberg MS (1996) Molecular biology of mammalian amino acid transporters. Annu Rev Biochem 65:305–336PubMedCrossRefGoogle Scholar
  40. Mazareb S, Fu ZY, Zilberstein D (1999) Developmental regulation of proline transport in Leishmania donovani. Exp Parasitol 91(4):341–348PubMedCrossRefGoogle Scholar
  41. Mukkada AJ, Schaefer FW III, Simon MW, Neu C (1974) Delayed in vitro utilization of glucose by Leishmania tropica promastigotes. J Protozool 21:393–397PubMedGoogle Scholar
  42. Mukkada AJ, Meade JC, Glaser TA, Bonventre PF (1985) Enhanced metabolism of Leishmania donovani amastigotes at acid pH: an adaptation for intracellular growth. Science 229:1099–1101PubMedCrossRefGoogle Scholar
  43. Opperdoes FR, Coombs GH (2007) Metabolism of Leishmania: proven and predicted. Trends Parasitol 23:149–158PubMedCrossRefGoogle Scholar
  44. Pereira CA, Alonso GD, Paveto MC, Flawia MM, Torres HN (1999) l-arginine uptake and l-phosphoarginine synthesis in Trypanosoma cruzi. J Eukaryot Microbiol 46(6):566–570PubMedCrossRefGoogle Scholar
  45. Pereira CA, Alonso GD, Paveto MC, Iribarren A, Cabanas ML, Torres HN, Flawia MM (2000) Trypanosoma cruzi arginine kinase characterization and cloning. A novel energetic pathway in protozoan parasites. J Biol Chem 275(2):1495–1501PubMedCrossRefGoogle Scholar
  46. Pereira CA, Alonso GD, Torres HN, Flawia MM (2002) Arginine kinase: a common feature for management of energy reserves in African and American flagellated trypanosomatids. J Eukaryot Microbiol 49(1):82–85PubMedCrossRefGoogle Scholar
  47. Price MN, Dehal PS, Arkin AP (2009) Fasttree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26(7):1641–1650PubMedCrossRefGoogle Scholar
  48. Rentsch D, Laloi M, Rouhara I, Schmelzer E, Delrot S, Frommer WB (1995) Ntr1 encodes a high affinity oligopeptide transporter in Arabidopsis. FEBS Lett 370(3):264–268PubMedCrossRefGoogle Scholar
  49. Rentsch D, Schmidt S, Tegeder M (2007) Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581(12):2281–2289PubMedCrossRefGoogle Scholar
  50. Roberts SC, Tancer MJ, Polinsky MR, Gibson KM, Heby O, Ullman B (2004) Arginase plays a pivotal role in polyamine precursor metabolism in Leishmania: characterization of gene deletion mutants. J Biol Chem 279:23668–23678PubMedCrossRefGoogle Scholar
  51. Rosenzweig D, Smith D, Opperdoes FR, Stern S, Olafson RW, Zilberstein D (2008) Retooling Leishmania metabolism: from sandfly gut to human macrophage. FASEB J 22(2):590–602PubMedCrossRefGoogle Scholar
  52. Ruepp S, Furger A, Kurath U, Renggli CK, Hemphill A, Brun R, Roditi I (1997) Survival of Trypanosoma brucei in the Tsetse fly is enhanced by the expression of specific forms of procyclin. J Cell Biol 137(6):1369–1379PubMedCrossRefGoogle Scholar
  53. Saar Y, Ransford A, Waldman E, Mazareb S, Amin-Spector S, Plumblee J, Turco SJ, Zilberstein D (1998) Characterization of developmentally-regulated activities in axenic amastigotes of Leishmania donovani. Mol Biochem Parasitol 95(1):9–20PubMedCrossRefGoogle Scholar
  54. Sacks DL, Perkins PV (1984) Identification of an infective stage of Leishmania promastigotes. Science 223(4643):1417–1419PubMedCrossRefGoogle Scholar
  55. Saxena A, Lahav T, Holland N, Aggarwal G, Anupama A, Huang Y, Volpin H, Myler PJ, Zilberstein D (2007) Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Mol Biochem Parasitol 152(1):53–65PubMedCrossRefGoogle Scholar
  56. Shaked-Mishan P, Suter-Grotemeyer M, Yoel-Almagor T, Holland N, Zilberstein D, Rentsch D (2006) A novel high-affinity arginine transporter from the human parasitic protozoan Leishmania donovani. Mol Microbiol 60(1):30–38PubMedCrossRefGoogle Scholar
  57. Silber AM, Tonelli RR, Martinelli M, Colli W, Alves MJ (2002) Active transport of l-proline in Trypanosoma cruzi. J Eukaryot Microbiol 49(6):441–446PubMedCrossRefGoogle Scholar
  58. Silber AM, Rojas RL, Urias U, Colli W, Alves MJ (2006) Biochemical characterization of the glutamate transport in Trypanosoma cruzi. Int J Parasitol 36(2):157–163PubMedCrossRefGoogle Scholar
  59. Singh RK, Pandey HP, Sundar S (2006) Visceral leishmaniasis (kala-azar): challenges ahead. Indian J Med Res 123(3):331–344PubMedGoogle Scholar
  60. Stepansky A, Yao Y, Tang G, Galili G (2005) Regulation of lysine catabolism in Arabidopsis through concertedly regulated synthesis of the two distinct gene products of the composite atlkr/sdh locus. J Exp Bot 56(412):525–536PubMedCrossRefGoogle Scholar
  61. Tetaud E, Lecuix I, Sheldrake T, Baltz T, Fairlamb AH (2002) A new expression vector for Crithidia fasciculata and Leishmania. Mol Biochem Parasitol 120(2):195–204PubMedCrossRefGoogle Scholar
  62. Tonelli RR, Silber AM, Almeida-de-Faria M, Hirata IY, Colli W, Alves MJ (2004) l-proline is essential for the intracellular differentiation of Trypanosoma cruzi. Cell Microbiol 6(8):733–741PubMedCrossRefGoogle Scholar
  63. Vazquez MP, Levin MJ (1999) Functional analysis of the intergenic regions of tcp2beta gene loci allowed the construction of an improved Trypanosoma cruzi expression vector. Gene 239(2):217–225PubMedCrossRefGoogle Scholar
  64. Zilberstein D, Gepstein A (1993) Regulation of l-proline transport in Leishmania donovani by extracellular pH. Mol Biochem Parasitol 61(2):197–205PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ehud Inbar
    • 1
  • Gaspar E. Canepa
    • 2
  • Carolina Carrillo
    • 3
  • Fabian Glaser
    • 1
  • Marianne Suter Grotemeyer
    • 4
  • Doris Rentsch
    • 4
  • Dan Zilberstein
    • 1
    Email author
  • Claudio A. Pereira
    • 2
  1. 1.Faculty of BiologyTechnion-Israel Institute of TechnologyHaifaIsrael
  2. 2.Departamento de Sustancias Vasoactivas, Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo LanariUniversidad de Buenos Aires and CONICETBuenos AiresArgentina
  3. 3.Fundación Instituto Leloir, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires and CONICETBuenos AiresArgentina
  4. 4.Institute of Plant SciencesUniversity of BernBernSwitzerland

Personalised recommendations