Advertisement

Amino Acids

, Volume 39, Issue 2, pp 349–357 | Cite as

Beneficial effects of l-arginine on reducing obesity: potential mechanisms and important implications for human health

  • Jason R. McKnight
  • M. Carey Satterfield
  • Wenjuan S. Jobgen
  • Stephen B. Smith
  • Thomas E. Spencer
  • Cynthia J. Meininger
  • Catherine J. McNeal
  • Guoyao Wu
Invited Review

Abstract

Over the past 20 years, growing interest in the biochemistry, nutrition, and pharmacology of l-arginine has led to extensive studies to explore its nutritional and therapeutic roles in treating and preventing human metabolic disorders. Emerging evidence shows that dietary l-arginine supplementation reduces adiposity in genetically obese rats, diet-induced obese rats, finishing pigs, and obese human subjects with Type-2 diabetes mellitus. The mechanisms responsible for the beneficial effects of l-arginine are likely complex, but ultimately involve altering the balance of energy intake and expenditure in favor of fat loss or reduced growth of white adipose tissue. Recent studies indicate that l-arginine supplementation stimulates mitochondrial biogenesis and brown adipose tissue development possibly through the enhanced synthesis of cell-signaling molecules (e.g., nitric oxide, carbon monoxide, polyamines, cGMP, and cAMP) as well as the increased expression of genes that promote whole-body oxidation of energy substrates (e.g., glucose and fatty acids) Thus, l-arginine holds great promise as a safe and cost-effective nutrient to reduce adiposity, increase muscle mass, and improve the metabolic profile in animals and humans.

Keywords

Arginine Fat metabolism Brown adipose tissue NO 

Abbreviations

ACC

Acetyl-CoA carboxylase

AMPK

AMP-activated protein kinase

Arg

l-Arginine

BAT

Brown adipose tissue

CPT-1

Carnitine palmitoyl transferase-1

DIO

Diet-induced obese

GC

Guanylyl cyclase

LCFA

Long-chain fatty acid

NO

Nitric oxide

NOS

Nitric oxide synthase

PGC-1α

Peroxisome proliferator-activated receptor γ coactivator-1α

UPC1

Uncoupling protein-1

WAT

White adipose tissue

ZDF

Zucker diabetic fatty

Notes

Acknowledgments

We thank Frances Mutscher and Merrick Gearing for assistance in manuscript preparation. This work was supported, in part, by grants from National Institutes of Health (R21 HL094689), National Research Initiative Competitive Grants (2008-35206-18762, 2008-35206-18764, 2008-35203-19120 and 2009-35206-05211) from the USDA Cooperative State Research, Education, and Extension Service, American Heart Association (0655109Y and 0755024Y), and Texas AgriLife Research (H-8200).

References

  1. Baker DH (2009) Advances in protein-amino acid nutrition of poultry. Amino Acids 37:29–41CrossRefPubMedGoogle Scholar
  2. Böger RH, Bode-Böger SM (2001) The clinical pharmacology of l-arginine. Annu Rev Pharmacol Toxiol 41:79–99CrossRefGoogle Scholar
  3. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359CrossRefPubMedGoogle Scholar
  4. CDC (2009) Obesity and overweight for professionals: data and statistics. http://www.cdc.gov/obesity/data/index.html. Accessed 20 Nov 2009
  5. Chung KY, Choi CB, Kawachi H et al (2005) Trans-10, cis-12 conjugated linoleic acid antagonizes arginine-promoted differentiation of bovine preadipocytes. Adipocytes 2:93–100Google Scholar
  6. Cypess AM, Lehman S, Williams G et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517CrossRefPubMedGoogle Scholar
  7. De Luca B, Monda M, Sullo A (1995) Changes in eating behavior and thermogenic activity following inhibition of nitric oxide formation. Am J Physiol 268:R1533–R1538PubMedGoogle Scholar
  8. Deng D, Yin YL, Chu WY et al (2009) Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet. J Nutr Biochem 20:544–552CrossRefPubMedGoogle Scholar
  9. Eklou-Lawson M, Bernard F, Neveux N et al (2009) Colonic luminal ammonia and portal blood l-glutamine and l-arginine concentrations: a possible link between colon mucosa and liver ureagenesis. Amino Acids 37:751–760CrossRefPubMedGoogle Scholar
  10. Elango R, Ball RO, Pencharz PB (2009) Amino acid requirements in humans: with a special emphasis on the metabolic availability of amino acids. Amino Acids 37:19–27CrossRefPubMedGoogle Scholar
  11. Flegal KM, Carroll MD, Ogden CL et al (2010) Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303:235–241CrossRefPubMedGoogle Scholar
  12. Flynn NE, Bird JG, Guthrie AS (2009) Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine. Amino Acids 37:123–129CrossRefPubMedGoogle Scholar
  13. Fu WJ, Haynes TE, Kohli R et al (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721PubMedGoogle Scholar
  14. Garcia-Villafranca J, Guillen A, Castro J (2003) Involvement of nitric oxide/cyclic GMP signaling pathway in the regulation of fatty acid metabolism in rat hepatocytes. Biochem Pharmacol 65:807–812CrossRefPubMedGoogle Scholar
  15. Gaudiot N, Jaubert AM, Charbonnier E et al (1998) Modulation of white adipose tissue lipolysis by nitric oxide. J Biol Chem 273:13475–13481CrossRefPubMedGoogle Scholar
  16. Gouill EL, Jimenez M, Binnert C et al (2007) Endothelial nitric oxide synthase (eNOS) knockout mice have defective mitochondrial β-oxidation. Diabetes 56:2690–2696CrossRefPubMedGoogle Scholar
  17. Haas B, Mayer P, Jennissen K et al (2009) Protein kinase G controls brown fat cell differentiation and mitochondrial biogenesis. Sci Signal 2(99):ra78CrossRefPubMedGoogle Scholar
  18. Haynes TE, Li P, Li XL et al (2009) l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37:131–142CrossRefPubMedGoogle Scholar
  19. He QH, Kong XF, Wu G et al (2009) Metabolomic analysis of the response of growing pigs to dietary l-arginine supplementation. Amino Acids 37:199–208CrossRefPubMedGoogle Scholar
  20. Himmshagen J (1990) Brown adipose tissue thermogenesis: interdisciplinary studies. FASEB J 4:2890–2898Google Scholar
  21. Jobgen WS, Fried SK, Fu WJ et al (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588CrossRefPubMedGoogle Scholar
  22. Jobgen W, Meininger CJ, Jobgen SC et al (2009a) Dietary l-arginine supplementation reduces white fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 139:230–237PubMedGoogle Scholar
  23. Jobgen W, Fu WJ, Gao H, Li P et al (2009b) High fat feeding and dietary l-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids 37:187–198CrossRefPubMedGoogle Scholar
  24. Kamerman PR, Laburn HP, Mitchell D (2003) Inhibitors of nitric oxide synthesis block cold-induced thermogenesis in rats. Can J Physiol Pharmacol 81:834–838CrossRefPubMedGoogle Scholar
  25. Kersten S (2001) Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep 2:282–286CrossRefPubMedGoogle Scholar
  26. King DE, Mainous AG, Geesey ME (2008) Variation in l-arginine intake follow demographics and lifestyle factors that may impact cardiovascular disease risk. Nutr Res 28:21–24CrossRefPubMedGoogle Scholar
  27. Kohli R, Meininger CJ, Haynes TE et al (2004) Dietary l-arginine supplementation enhances endothelial nitric oxide synthesis in streptozotocin-induced diabetic rats. J Nutr 134:600–608PubMedGoogle Scholar
  28. Lehman JJ, Barger PM, Kovacs A et al (2000) Peroxisome proliferator-activated receptor gamma coactivator 1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106:847–856CrossRefPubMedGoogle Scholar
  29. Li X, Bazer FW, Gao H et al (2009) Amino acids and gaseous signaling. Amino Acids 37:65–78CrossRefPubMedGoogle Scholar
  30. Lira VA, Soltow QA, Long JH et al (2007) Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle. Am J Physiol Endocrinol Metab 293:E1062–E1068CrossRefPubMedGoogle Scholar
  31. Lucotti P, Setola E, Monti LD et al (2006) Beneficial effects of a long-term oral l-arginine added to a hypocaloric diet and exercise training program in obese, insulin-resistant 2 diabetic patients. Am J Physiol Endocrinol Metab 291:E906–E912CrossRefPubMedGoogle Scholar
  32. Ma XY, Lin YC, Jiang ZY et al (2010) Dietary arginine supplementation enhances antioxidative capacity and improves meat quality of finishing pigs. Amino Acids 38:95–102CrossRefPubMedGoogle Scholar
  33. Madsen KL, Brockway PD, Johnson LR et al (1996) Role of ornithine decarboxylase in enterocyte mitochondrial function and integrity. Am J Physiol 270:G789–G797PubMedGoogle Scholar
  34. McConell GK, Ng GP, Phillips M et al (2009) Central role of nitric oxide synthase in AICAR and caffeine induced mitochondrial biogenesis in L6 myocytes. J Appl Physiol. doi: 10.1152/japplphysiol.00377.2009
  35. Mendez JD, Balderas F (2001) Regulation of hyperglycemia and dyslipidemia by exogenous l-arginine in diabetic rats. Biochimie 83:453–458CrossRefPubMedGoogle Scholar
  36. Mersmann HJ, Smith SB (2005) Development of white adipose tissue lipid metabolism. In: Burrin DG, Mersmann HJ (eds) Biology of metabolism in growing animals. Elsevier, Oxford, pp 275–302CrossRefGoogle Scholar
  37. Nisoli E, Carruba MO (2004) Emerging aspects of pharmacotherapy for obesity and metabolic syndrome. Pharmacol Res 50:453–469CrossRefPubMedGoogle Scholar
  38. Nisoli E, Clementi E, Paolucci C et al (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899CrossRefPubMedGoogle Scholar
  39. Nisoli E, Falcone S, Tonello C et al (2004) Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc Natl Acad Sci USA 101:16507–16512CrossRefPubMedGoogle Scholar
  40. Nisoli E, Cozzi V, Carruba MO (2008) Amino acids and mitochondrial biogenesis. Am J Cardiol 101S:22E–25ECrossRefGoogle Scholar
  41. Palii SS, Kays CE, Deval C et al (2009) Specificity of amino acid regulated gene expression: analysis of gene subjected to either complete or single amino acid deprivation. Amino Acids 37:79–88CrossRefPubMedGoogle Scholar
  42. Petrovic V, Buzadzic B, Korac A et al (2008) Antioxidative defence alterations in skeletal muscle during prolonged acclimation to cold: role of l-arginine/NO-producing pathway. J Exp Biol 211:114–120CrossRefPubMedGoogle Scholar
  43. Petrović V, Korać A, Buzadzić B et al (2005) The effects of l-arginine and l-NAME supplementation on redox-regulation and thermogenesis in interscapular brown adipose tissue. J Exp Biol 208:4263–4271CrossRefPubMedGoogle Scholar
  44. Petrović V, Korać A, Buzadzić B et al (2008) Nitric oxide regulates mitochondrial re-modelling in interscapular brown adipose tissue: ultrastructural and morphometric-stereologic studies. J Microsc 232:542–548CrossRefPubMedGoogle Scholar
  45. Petrović V, Buzadžić B, Korać A et al (2010) Antioxidative defense and mitochondrial thermogenic response in brown adipose tissue. Genes Nutr. doi: 10.1007/s12263-009-0162-1
  46. Phang JM, Donald SP, Pandhare J et al (2008) The metabolism of proline, as a stress substrate, modulates carcinogenic pathways. Amino Acids 35:681–690CrossRefPubMedGoogle Scholar
  47. Pi-Sunyer X (2003) A clinical view of the obesity problem. Science 299:859–860CrossRefPubMedGoogle Scholar
  48. Power GG (1989) Biology of temperature: the mammalian fetus. J Dev Physiol 12:295–304PubMedGoogle Scholar
  49. Puigserver P, Wu ZD, Park CW et al (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839CrossRefPubMedGoogle Scholar
  50. Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122CrossRefGoogle Scholar
  51. Saha SK, Ohinata H, Kuroshima A (1996) Effects of acute and chronic inhibition of nitric oxide synthase on brown adipose tissue thermogenesis. Jpn J Physiol 46:375–382CrossRefPubMedGoogle Scholar
  52. Satterfield MC, Bazer FW, Smith SB et al (2009) Arginine nutrition and fetal brown fat development. Amino Acids 37(Suppl. 1):6–7Google Scholar
  53. Scammell TE, Elmquist JK, Saper CB (1996) Inhibition of nitric oxide synthase produces hypothermia and depresses lipopolysaccharide fever. Am J Physiol 271:R333–R338PubMedGoogle Scholar
  54. Stipanuk MH, Ueki I, Dominy JE et al (2009) Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids 37:55–63CrossRefPubMedGoogle Scholar
  55. Suryawan A, O’Connor PMJ, Bush JA et al (2009) Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs. Amino Acids 37:97–104CrossRefPubMedGoogle Scholar
  56. Tan BE, Yin YL, Liu ZQ et al (2009) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37:169–175CrossRefPubMedGoogle Scholar
  57. Tan B, Yin Y, Kong X et al (2010) l-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids. doi: 10.1007/s00726-009-0334-8
  58. van Marken Lichtenbelt WD, Vanhommerig JW et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508CrossRefPubMedGoogle Scholar
  59. Virtanen KA, Lidell ME, Orava J et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525CrossRefPubMedGoogle Scholar
  60. Wadley GD, McConell GK (2007) Effect of nitric oxide synthase inhibition on mitochondrial biogenesis in rat skeletal muscle. J Appl Physiol 102:314–320CrossRefPubMedGoogle Scholar
  61. Wang XQ, Ou DY, Yin JD et al (2009a) Proteomic analysis reveals altered expression of proteins related to glutathione metabolism and apoptosis in the small intestine of zinc oxide-supplemented piglets. Amino Acids 37:209–218CrossRefPubMedGoogle Scholar
  62. Wang WW, Qiao SY, Li DF (2009b) Amino acids and gut function. Amino Acids 37:105–110CrossRefPubMedGoogle Scholar
  63. Wang JJ, Wu G, Zhou HJ et al (2009c) Emerging technologies for amino acid nutrition research in the post-genome era. Amino Acids 37:86–177Google Scholar
  64. World Health Organization (WHO) (2009) World health statistics-2009. http://www.who.int. Accessed 2 Mar 2010
  65. Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17CrossRefPubMedGoogle Scholar
  66. Wu G, Meininger CJ (2000) Arginine nutrition and cardiovascular function. J Nutr 130:2626–2629PubMedGoogle Scholar
  67. Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17PubMedGoogle Scholar
  68. Wu ZD, Puigserver P, Anderson U et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124CrossRefPubMedGoogle Scholar
  69. Wu G, Bazer FW, Cudd TA et al (2007a) Pharmacokinetics and safety of arginine supplementation in animals. J Nutr 137:1673S–1680SPubMedGoogle Scholar
  70. Wu G, Collins JK, Perkins-Veazie P et al (2007b) Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr 137:2680–2685PubMedGoogle Scholar
  71. Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168CrossRefPubMedGoogle Scholar
  72. Yao K, Yin YL, Chu W et al (2008) Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 138:867–872PubMedGoogle Scholar
  73. Yin FG, Liu YL, Yin YL et al (2009) Dietary supplementation with astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets. Amino Acids 37:263–270CrossRefPubMedGoogle Scholar
  74. Yongyi B, Sun L, Yang T et al (2009) Increase in fasting vascular endothelial function after short-term oral l-arginine is effective when baseline flow-mediated dilation is low: a mega-analysis of randomized controlled trials. Am J Clin Nutr 89:77–84Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jason R. McKnight
    • 1
  • M. Carey Satterfield
    • 1
  • Wenjuan S. Jobgen
    • 1
  • Stephen B. Smith
    • 1
  • Thomas E. Spencer
    • 1
  • Cynthia J. Meininger
    • 2
  • Catherine J. McNeal
    • 3
    • 4
  • Guoyao Wu
    • 1
    • 2
  1. 1.Department of Animal Science, Faculty of NutritionTexas A&M UniversityCollege StationUSA
  2. 2.Department of Systems Biology and Translational MedicineTexas A&M Health Science CenterCollege StationUSA
  3. 3.Department of Internal MedicineScott & White HealthcareTempleUSA
  4. 4.Department of PediatricsScott & White HealthcareTempleUSA

Personalised recommendations