Amino Acids

, Volume 41, Issue 2, pp 351–361 | Cite as

Quantitative proteome analysis of the 20S proteasome of apoptotic Jurkat T cells

  • Frank Schmidt
  • Burkhardt Dahlmann
  • Hanne K. Hustoft
  • Christian J. Koehler
  • Margarita Strozynski
  • Alexander Kloß
  • Ursula Zimny-Arndt
  • Peter R. Jungblut
  • Bernd Thiede
Original Article


Regulated proteolysis plays important roles in cell biology and pathological conditions. A crosstalk exists between apoptosis and the ubiquitin–proteasome system, two pathways responsible for regulated proteolysis executed by different proteases. To investigate whether the apoptotic process also affects the 20S proteasome, we performed three independent SILAC-based quantitative proteome approaches: 1-DE/MALDI-MS, small 2-DE/MALDI-MS and large 2-DE/nano-LC–ESI–MS. Taking the results of all experiments together, no quantitative changes were observed for the α- and β-subunits of the 20S proteasome except for subunit α7. This protein was identified in two protein spots with a down-regulation of the more acidic protein species (α7a) and up-regulation of the more basic protein species (α7b) during apoptosis. The difference in these two α7 protein species could be attributed to oxidation of cysteine-41 to cysteine sulfonic acid and phosphorylation at serine-250 near the C terminus in α7a, whereas these modifications were missing in α7b. These results pointed to the biological significance of posttranslational modifications of proteasome subunit α7 after induction of apoptosis.


Apoptosis 5-Fluorouracil 20S proteasome Phosphorylation SILAC 



19S regulator complex




Heavy to light


Poly (ADP-ribose) polymerase-1


Stable isotope labeling with amino acids in cell culture

Supplementary material

726_2010_575_MOESM1_ESM.xls (42 kb)
Supplementary material 1 (XLS 42 kb)


  1. Adrain C, Creagh EM, Cullen SP, Martin SJ (2004) Caspase-dependent inactivation of proteasome function during programmed cell death in Drosophila and man. J Biol Chem 279:36923–36930PubMedCrossRefGoogle Scholar
  2. Alvarez-Castelao B, Castano JG (2005) Mechanism of direct degradation of IkappaBalpha by 20S proteasome. FEBS Lett 579:4797–4802PubMedCrossRefGoogle Scholar
  3. Arrigo AP, Mehlen P (1993) Hela cells proteasome interacts with leucine-rich polypeptides and contains a phosphorylated subunit. Biochem Biophys Res Commun 194:1387–1393PubMedCrossRefGoogle Scholar
  4. Bardag-Gorce F, Venkatesh R, Li J, French BA, French SW (2004) Hyperphosphorylation of rat liver proteasome subunits: the effects of ethanol and okadaic acid are compared. Life Sci 75:585–597PubMedCrossRefGoogle Scholar
  5. Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:367–380PubMedCrossRefGoogle Scholar
  6. Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R (1999) The proteasome. Annu Rev Biophys Biomol Struct 28:295–317PubMedCrossRefGoogle Scholar
  7. Boelens WC, Croes Y, de Jong WW (2001) Interaction between alphaB-crystallin and the human 20S proteasomal subunit C8/alpha7. Biochim Biophys Acta 1544:311–319PubMedCrossRefGoogle Scholar
  8. Bose S, Stratford FL, Broadfoot KI, Mason GG, Rivett AJ (2004) Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon. Biochem J 378:177–184PubMedCrossRefGoogle Scholar
  9. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333PubMedCrossRefGoogle Scholar
  10. Castano JG, Mahillo E, Arizti P, Arribas J (1996) Phosphorylation of C8 and C9 subunits of the multicatalytic proteinase by casein kinase II and identification of the C8 phosphorylation sites by direct mutagenesis. Biochemistry 35:3782–3789PubMedCrossRefGoogle Scholar
  11. Claverol S, Burlet-Schiltz O, Girbal-Neuhauser E, Gairin JE, Monsarrat B (2002) Mapping and structural dissection of human 20 S proteasome using proteomic approaches. Mol Cell Proteomics 1:567–578PubMedCrossRefGoogle Scholar
  12. Creasy DM, Cottrell JS (2002) Error tolerant searching of uninterpreted tandem mass spectrometry data. Proteomics 2:1426–1434PubMedCrossRefGoogle Scholar
  13. Dahlmann B (2005) Proteasomes. Essays Biochem 41:31–48PubMedCrossRefGoogle Scholar
  14. Dahlmann B, Ruppert T, Kuehn L, Merforth S, Kloetzel PM (2000) Different proteasome subtypes in a single tissue exhibit different enzymatic properties. J Mol Biol 303:643–653PubMedCrossRefGoogle Scholar
  15. Doherty NS, Littman BH, Reilly K, Swindell AC, Buss JM, Anderson NL (1998) Analysis of changes in acute-phase plasma proteins in an acute inflammatory response and in rheumatoid arthritis using two-dimensional gel electrophoresis. Electrophoresis 19:355–363PubMedCrossRefGoogle Scholar
  16. Dong J, Chen W, Welford A, Wandinger-Ness A (2004) The proteasome alpha-subunit XAPC7 interacts specifically with Rab7 and late endosomes. J Biol Chem 279:21334–21342PubMedCrossRefGoogle Scholar
  17. Drews O, Wildgruber R, Zong C, Sukop U, Nissum M, Weber G, Gomes AV, Ping P (2007) Mammalian proteasome subpopulations with distinct molecular compositions and proteolytic activities. Mol Cell Proteomics 6:2021–2031PubMedCrossRefGoogle Scholar
  18. Froment C, Uttenweiler-Joseph S, Bousquet-Dubouch MP, Matondo M, Borges JP, Esmenjaud C, Lacroix C, Monsarrat B, Burlet-Schiltz O (2005) A quantitative proteomic approach using two-dimensional gel electrophoresis and isotope-coded affinity tag labeling for studying human 20S proteasome heterogeneity. Proteomics 5:2351–2363PubMedCrossRefGoogle Scholar
  19. Fujiwara N, Nakano M, Kato S, Yoshihara D, Ookawara T, Eguchi H, Taniguchi N, Suzuki K (2007) Oxidative modification to cysteine sulfonic acid of Cys111 in human copper–zinc superoxide dismutase. J Biol Chem 282:35933–35944PubMedCrossRefGoogle Scholar
  20. Glickman MH, Ciechanover A (2002) The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428PubMedGoogle Scholar
  21. Grubbs FE (1969) Procedures for detecting outlying observations in samples. Technometrics 11:1–21CrossRefGoogle Scholar
  22. Guerrero C, Tagwerker C, Kaiser P, Huang L (2006) An integrated mass spectrometry-based proteomic approach: quantitative analysis of tandem affinity-purified in vivo cross-linked protein complexes (QTAX) to decipher the 26 S proteasome-interacting network. Mol Cell Proteomics 5:366–378PubMedGoogle Scholar
  23. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479PubMedCrossRefGoogle Scholar
  24. Huang L, Burlingame AL (2005) Comprehensive mass spectrometric analysis of the 20S proteasome complex. Methods Enzymol 405:187–236PubMedCrossRefGoogle Scholar
  25. Ikeda K, Nakano R, Uraoka M, Nakagawa Y, Koide M, Katsume A, Minamino K, Yamada E, Yamada H, Quertermous T, Matsubara H (2009) Identification of ARIA regulating endothelial apoptosis and angiogenesis by modulating proteasomal degradation of cIAP-1 and cIAP-2. Proc Natl Acad Sci USA 106:8227–8232PubMedCrossRefGoogle Scholar
  26. Iwafune Y, Kawasaki H, Hirano H (2004) Identification of three phosphorylation sites in the alpha7 subunit of the yeast 20S proteasome in vivo using mass spectrometry. Arch Biochem Biophys 431:9–15PubMedCrossRefGoogle Scholar
  27. Jin Y, Lee H, Zeng SX, Dai MS, Lu H (2003) MDM2 promotes p21waf1/cip1 proteasomal turnover independently of ubiquitylation. EMBO J 22:6365–6377PubMedCrossRefGoogle Scholar
  28. Jungblut PR, Seifert R (1990) Analysis by high-resolution two-dimensional electrophoresis of differentiation-dependent alterations in cytosolic protein pattern of HL-60 leukemic cells. J Biochem Biophys Methods 21:47–58PubMedCrossRefGoogle Scholar
  29. Jungblut PR, Holzhutter HG, Apweiler R, Schluter H (2008) The speciation of the proteome. Chem Cent J 2:16PubMedCrossRefGoogle Scholar
  30. Keller DM, Zeng X, Wang Y, Zhang QH, Kapoor M, Shu H, Goodman R, Lozano G, Zhao Y, Lu H (2001) A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol Cell 7:283–292PubMedCrossRefGoogle Scholar
  31. Kimura Y, Takaoka M, Tanaka S, Sassa H, Tanaka K, Polevoda B, Sherman F, Hirano H (2000) N(alpha)-acetylation and proteolytic activity of the yeast 20 S proteasome. J Biol Chem 275:4635–4639PubMedCrossRefGoogle Scholar
  32. Koehler CJ, Strozynski M, Kozielski F, Treumann A, Thiede B (2009) Isobaric peptide termini labeling for MS/MS-based quantitative proteomics. J Proteome Res 8:4333–4341PubMedCrossRefGoogle Scholar
  33. Kuckelkorn U, Ruppert T, Strehl B, Jungblut PR, Zimny-Arndt U, Lamer S, Prinz I, Drung I, Kloetzel PM, Kaufmann SH, Steinhoff U (2002) Link between organ-specific antigen processing by 20S proteasomes and CD8(+) T cell-mediated autoimmunity. J Exp Med 195:983–990PubMedCrossRefGoogle Scholar
  34. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  35. Lehmann WD, Kruger R, Salek M, Hung CW, Wolschin F, Weckwerth W (2007) Neutral loss-based phosphopeptide recognition: a collection of caveats. J Proteome Res 6:2866–2873PubMedCrossRefGoogle Scholar
  36. Lim JC, Choi HI, Park YS, Nam HW, Woo HA, Kwon KS, Kim YS, Rhee SG, Kim K, Chae HZ (2008) Irreversible oxidation of the active-site cysteine of peroxiredoxin to cysteine sulfonic acid for enhanced molecular chaperone activity. J Biol Chem 283:28873–28880PubMedCrossRefGoogle Scholar
  37. Ling MT, Chiu YT, Lee TK, Leung SC, Fung MK, Wang X, Wong KF, Wong YC (2008) Id-1 induces proteasome-dependent degradation of the HBX protein. J Mol Biol 382:34–43PubMedCrossRefGoogle Scholar
  38. Liu CH, Goldberg AL, Qiu XB (2007) New insights into the role of the ubiquitin–proteasome pathway in the regulation of apoptosis. Chang Gung Med J 30:469–479PubMedGoogle Scholar
  39. Lu H, Zong C, Wang Y, Young GW, Deng N, Souda P, Li X, Whitelegge J, Drews O, Yang PY, Ping P (2008) Revealing the dynamics of the 20 S proteasome phosphoproteome: a combined CID and electron transfer dissociation approach. Mol Cell Proteomics 7:2073–2089PubMedCrossRefGoogle Scholar
  40. Ludemann R, Lerea KM, Etlinger JD (1993) Copurification of casein kinase II with 20 S proteasomes and phosphorylation of a 30-kDa proteasome subunit. J Biol Chem 268:17413–17417PubMedGoogle Scholar
  41. Mason GG, Hendil KB, Rivett AJ (1996) Phosphorylation of proteasomes in mammalian cells. Identification of two phosphorylated subunits and the effect of phosphorylation on activity. Eur J Biochem 238:453–462PubMedCrossRefGoogle Scholar
  42. Mittenberg AG, Moiseeva TN, Barlev NA (2008) Role of proteasomes in transcription and their regulation by covalent modifications. Front Biosci 13:7184–7192PubMedCrossRefGoogle Scholar
  43. Olsen JV, de Godoy LM, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4:2010–2021PubMedCrossRefGoogle Scholar
  44. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386PubMedCrossRefGoogle Scholar
  45. Orlowski RZ, Kuhn DJ (2008) Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res 14:1649–1657PubMedCrossRefGoogle Scholar
  46. Orlowski M, Wilk S (2003) Ubiquitin-independent proteolytic functions of the proteasome. Arch Biochem Biophys 415:1–5PubMedCrossRefGoogle Scholar
  47. Paradela A, Albar JP (2008) Advances in the analysis of protein phosphorylation. J Proteome Res 7:1809–1818PubMedCrossRefGoogle Scholar
  48. Pardo PS, Murray PF, Walz K, Franco L, Passeron S (1998) In vivo and in vitro phosphorylation of the alpha 7/PRS1 subunit of Saccharomyces cerevisiae 20 S proteasome: in vitro phosphorylation by protein kinase CK2 is absolutely dependent on polylysine. Arch Biochem Biophys 349:397–401PubMedCrossRefGoogle Scholar
  49. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567PubMedCrossRefGoogle Scholar
  50. Rabl J, Smith DM, Yu Y, Chang SC, Goldberg AL, Cheng Y (2008) Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell 30:360–368PubMedCrossRefGoogle Scholar
  51. Raijmakers R, Berkers CR, de Jong A, Ovaa H, Heck AJ, Mohammed S (2008) Automated online sequential isotope labeling for protein quantitation applied to proteasome tissue-specific diversity. Mol Cell Proteomics 7:1755–1762PubMedCrossRefGoogle Scholar
  52. Rechsteiner M, Hill CP (2005) Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol 15:27–33PubMedCrossRefGoogle Scholar
  53. Rivett AJ, Mason GG, Thomson S, Pike AM, Savory PJ, Murray RZ (1995) Catalytic components of proteasomes and the regulation of proteinase activity. Mol Biol Rep 21:35–41PubMedCrossRefGoogle Scholar
  54. Schluter H, Apweiler R, Holzhutter HG, Jungblut PR (2009) Finding one’s way in proteomics: a protein species nomenclature. Chem Cent J 3:11PubMedCrossRefGoogle Scholar
  55. Schmidt F, Dahlmann B, Janek K, Kloss A, Wacker M, Ackermann R, Thiede B, Jungblut PR (2006) Comprehensive quantitative proteome analysis of 20S proteasome subtypes from rat liver by isotope coded affinity tag and 2-D gel-based approaches. Proteomics 6:4622–4632PubMedCrossRefGoogle Scholar
  56. Schmidt F, Strozynski M, Salus SS, Nilsen H, Thiede B (2007) Rapid determination of amino acid incorporation by stable isotope labeling with amino acids in cell culture (SILAC). Rapid Commun Mass Spectrom 21:3919–3926PubMedCrossRefGoogle Scholar
  57. Schmidt F, Fiege T, Hustoft HK, Kneist S, Thiede B (2009) Shotgun mass mapping of Lactobacillus species and subspecies from caries related isolates by MALDI-MS. Proteomics 9:1994–2003PubMedCrossRefGoogle Scholar
  58. Sdek P, Ying H, Chang DL, Qiu W, Zheng H, Touitou R, Allday MJ, Xiao ZX (2005) MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol Cell 20:699–708PubMedCrossRefGoogle Scholar
  59. Shu F, Guo S, Dang Y, Qi M, Zhou G, Guo Z, Zhang Y, Wu C, Zhao S, Yu L (2003) Human aurora-B binds to a proteasome alpha-subunit HC8 and undergoes degradation in a proteasome-dependent manner. Mol Cell Biochem 254:157–162PubMedCrossRefGoogle Scholar
  60. Sun XM, Butterworth M, MacFarlane M, Dubiel W, Ciechanover A, Cohen GM (2004) Caspase activation inhibits proteasome function during apoptosis. Mol Cell 14:81–93PubMedCrossRefGoogle Scholar
  61. Tanaka K, Tanahashi N, Tsurumi C, Yokota KY, Shimbara N (1997) Proteasomes and antigen processing. Adv Immunol 64:1–38PubMedCrossRefGoogle Scholar
  62. Thiede B, Hohenwarter W, Krah A, Mattow J, Schmid M, Schmidt F, Jungblut PR (2005) Peptide mass fingerprinting. Methods 35:237–247PubMedCrossRefGoogle Scholar
  63. Touitou R, Richardson J, Bose S, Nakanishi M, Rivett J, Allday MJ (2001) A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 alpha-subunit of the 20S proteasome. EMBO J 20:2367–2375PubMedCrossRefGoogle Scholar
  64. Tsimokha AS, Mittenberg AG, Kulichkova VA, Kozhukharova IV, Gause LN, Konstantinova IM (2007) Changes in composition and activities of 26S proteasomes under the action of doxorubicin-apoptosis inductor of erythroleukemic K562 cells. Cell Biol Int 31:338–348PubMedCrossRefGoogle Scholar
  65. Uttenweiler-Joseph S, Claverol S, Sylvius L, Bousquet-Dubouch MP, Burlet-Schiltz O, Monsarrat B (2008) Toward a full characterization of the human 20S proteasome subunits and their isoforms by a combination of proteomic approaches. Methods Mol Biol 484:111–130PubMedCrossRefGoogle Scholar
  66. Wang X, Chen CF, Baker PR, Chen PL, Kaiser P, Huang L (2007) Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry 46:3553–3565PubMedCrossRefGoogle Scholar
  67. Wehren A, Meyer HE, Sobek A, Kloetzel PM, Dahlmann B (1996) Phosphoamino acids in proteasome subunits. Biol Chem 377:497–503PubMedGoogle Scholar
  68. Yi P, Feng Q, Amazit L, Lonard DM, Tsai SY, Tsai MJ, O’Malley BW (2008) Atypical protein kinase C regulates dual pathways for degradation of the oncogenic coactivator SRC-3/AIB1. Mol Cell 29:465–476PubMedCrossRefGoogle Scholar
  69. Ying J, Clavreul N, Sethuraman M, Adachi T, Cohen RA (2007) Thiol oxidation in signaling and response to stress: detection and quantification of physiological and pathophysiological thiol modifications. Free Radic Biol Med 43:1099–1108PubMedCrossRefGoogle Scholar
  70. Zhang Z, Torii N, Furusaka A, Malayaman N, Hu Z, Liang TJ (2000) Structural and functional characterization of interaction between hepatitis B virus X protein and the proteasome complex. J Biol Chem 275:15157–15165PubMedCrossRefGoogle Scholar
  71. Zimny-Arndt U, Schmid M, Ackermann R, Jungblut PR (2009) Classical proteomics: two-dimensional electrophoresis/MALDI mass spectrometry. Methods Mol Biol 492:65–91PubMedCrossRefGoogle Scholar
  72. Zong C, Young GW, Wang Y, Lu H, Deng N, Drews O, Ping P (2008) Two-dimensional electrophoresis-based characterization of post-translational modifications of mammalian 20S proteasome complexes. Proteomics 8:5025–5037PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Frank Schmidt
    • 1
    • 2
  • Burkhardt Dahlmann
    • 3
  • Hanne K. Hustoft
    • 1
  • Christian J. Koehler
    • 1
  • Margarita Strozynski
    • 1
  • Alexander Kloß
    • 3
  • Ursula Zimny-Arndt
    • 4
  • Peter R. Jungblut
    • 4
  • Bernd Thiede
    • 1
  1. 1.The Biotechnology Centre of OsloUniversity of OsloOsloNorway
  2. 2.Interfaculty Institute for Genetics and Functional GenomicsUniversity of GreifswaldGreifswaldGermany
  3. 3.Institute of BiochemistryCharité-UniversitätsmedizinBerlinGermany
  4. 4.Max Planck Institute for Infection Biology, Core Facility Protein AnalysisBerlinGermany

Personalised recommendations