Amino Acids

, Volume 39, Issue 1, pp 45–57 | Cite as

Nucleobase-containing peptides: an overview of their characteristic features and applications

  • Giovanni N. Roviello
  • Ettore Benedetti
  • Carlo Pedone
  • Enrico M. Bucci
Minireview Article


Reports on nucleobase-containing chiral peptides (both natural and artificial) and achiral pseudopeptides are reviewed. Their synthesis, structural features, DNA and RNA-binding ability, as well as some other interesting applications which make them promising diagnostic/therapeutic agents of great importance in many areas of biology and therapy are taken into critical consideration.


Nucleobase Peptide Nucleopeptide Nucleic acid 



The authors would like to thank Dr. Claudia Crescenzo and Dr. Valentina Roviello for thoughtful discussions. We are grateful to the institutions that support our laboratory (Istituto di Biostrutture e Bioimmagini-Consiglio Nazionale delle Ricerche and Università degli Studi di Napoli ‘Federico II’).


  1. Altenbrunn F, Seitz O (2008) O-Allyl protection in the Fmoc-based synthesis of difficult PNA. Org Biomol Chem 6:2493–2498PubMedCrossRefGoogle Scholar
  2. Astriab-Fisher A, Sergueev DS, Fisher M, Ramsay Shaw B, Juliano RL (2000) Antisense inhibition of P-glycoprotein expression using peptide–oligonucleotide conjugates. Biochem Pharmacol 60:83–90PubMedCrossRefGoogle Scholar
  3. Azzam ME, Algranati ID (1973) Mechanism of puromycin action: fate of ribosomes after release of nascent protein chains from polysomes. Proc Nat Acad Sci USA 70:3866–3869PubMedCrossRefGoogle Scholar
  4. Betts L, Josey JA, Veal JM, Jordan SR (1995) A nucleic acid triple helix formed by a peptide nucleic acid-DNA complex. Science 270:1838–1841PubMedCrossRefGoogle Scholar
  5. Boado RJ, Tsukamoto H, Pardridge WM (1998) Drug delivery of antisense molecules to the brain for treatment of Alzheimer’s disease and cerebral AIDS. J Pharm Sci 87:1308–1315PubMedCrossRefGoogle Scholar
  6. Brandt O, Hoheisel JD (2004) Peptide nucleic acids on microarrays and other biosensors. Trends Biotechnol 22:617–622PubMedCrossRefGoogle Scholar
  7. Brasun J, Oldziej S, Taddei M, Kozłowski H (2001) Impact of Cu(II) and Ni(II) on the structure of chiral peptide nucleic acids having four, six and eight thymines in a peptide side chain. J Inorg Biochem 85:79–87PubMedCrossRefGoogle Scholar
  8. Buttrey JD, Jones AS, Walker RT (1975) Synthetic Analogues of Polynucleotides-XII(The Resolution of dl-beta-(Thymin-1-yl)Alanine and Polymerisation of the beta-(Thymin-1-yl)Alanines. Tetrahedron 31:73–75CrossRefGoogle Scholar
  9. Calabretta A, Tedeschi T, Di Cola G, Corradini R, Sforza S, Marchelli R (2009) Arginine-based PNA microarrays for APOE genotyping. Mol Biosyst 5:1323–1330PubMedCrossRefGoogle Scholar
  10. Christensen L, Fitzpatrick R, Gildea B, Petersen KH, Hansenn HF, Koch T, Egholm M, Buchardt O, Nielsen PE, Coull J et al (1995) Solid-phase synthesis of peptide nucleic acids. J Pept Sci 3:175–183CrossRefGoogle Scholar
  11. Corey DR (1997) Peptide nucleic acids—expanding the options for nucleic acid recognition. Trends Biotechnol 15:224–229PubMedCrossRefGoogle Scholar
  12. Corradini R, Sforza S, Dossena A, Palla G, Rocchi R, Filira F, Nastri F, Marchelli R (2001) Epimerization of peptide nucleic acids analogs during solid-phase synthesis: optimization of the coupling conditions for increasing the optical purity. J Chem Soc Perkin Trans 1:2690–2696CrossRefGoogle Scholar
  13. Corradini R, Sforza S, Tedeschi T, Totsingan F, Marchelli R (2007) Peptide nucleic acids with a structurally biased backbone: effects of conformational constraints and stereochemistry. Curr Top Med Chem 7:681–694PubMedCrossRefGoogle Scholar
  14. Corriveau MN, Zhang N, Holtappels G, Van Roy N, Bachert C (2009) Detection of Staphylococcus aureus in nasal tissue with peptide nucleic acid-fluorescence in situ hybridization. Am J Rhinol Allergy 23:461–465PubMedCrossRefGoogle Scholar
  15. De la Torre BG, Aviñó A, Tarrason G, Piulats J, Albericio F, Eritja R (1994) Stepwise solid-phase synthesis of oligonucleotide-peptide hybrids. Tetrahedron Lett 35:2733–2736CrossRefGoogle Scholar
  16. Demers DB, Curry ET, Egholm M, Sozer AC (1995) Enhanced PCR amplification of VNTR locus D1S80 using peptide nucleic acid (PNA). Nucleic Acids Res 23:3050–3055PubMedCrossRefGoogle Scholar
  17. Demidov VV (2001) PD-loop technology: PNA openers at work. Expert Rev Mol Diagn 1:343–351PubMedCrossRefGoogle Scholar
  18. Demidov VV, Potaman VN, Frank-Kamenetskii MD, Egholm M, Buchardt O, Sonnichsen SH et al (1994) Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol 48:1310–1313PubMedCrossRefGoogle Scholar
  19. Diederichsen U (1996) Pairing properties of alanyl peptide nucleic acids containing an amino acid backbone with alternating configuration. Angew Chem Int Ed 35:445–448CrossRefGoogle Scholar
  20. Diederichsen U, Schmitt HW (1996) Self-pairing PNA with alternating alanyl-/homoalanyl backbone. Tetrahedron Lett 37:475–478CrossRefGoogle Scholar
  21. Diederichsen U, Weicherdling D, Diezemann N (2005) Side chain homologation of alanyl peptide nucleic acids: pairing selectivity and stacking. Org Biomol Chem 3:1058–1066PubMedCrossRefGoogle Scholar
  22. Doel MT, Jones AS, Taylor N (1969) An approach to the synthesis of peptide analogues of oligonucleotides (Nucleopeptides). Tetrahedron Lett 27:2285–2288CrossRefGoogle Scholar
  23. Doel MT, Jones AS, Walker RT (1974) The synthesis of peptides containing purine and pyrimidine derivatives of dl-alanine. Tetrahedron 30:2755–2759CrossRefGoogle Scholar
  24. Dragulescu-Andrasi A, Rapireddy S, He G, Bhattacharya B, Hyldig-Nielsen JJ, Zon G, Ly DH (2006) Cell-permeable peptide nucleic acid designed to bind to the 5’-untranslated region of E-cadherin transcript induces potent and sequence-specific antisense effects. J Am Chem Soc 128:16104–16112PubMedCrossRefGoogle Scholar
  25. Draminski M, Pitha J (1978) Polypeptides containing adenine and uracil residues. Makromol Chem 179:2195–2200CrossRefGoogle Scholar
  26. Dueholm K, Egholm M, Behrens C, Christensen L, Hansen HF, Vulpius T, Petersen KH, Berg RH, Nielsen PE, Buchardt O (1994) Synthesis of peptide nucleic acid monomers containing the 4 natural nucleobases—thymine, cytosine, adenine, and guanine—and their oligomerization. J Org Chem 59:5767–5773CrossRefGoogle Scholar
  27. Egholm M, Buchardt O, Nielsen PE, Berg RH (1992) Peptide nucleic acids (PNA)—oligonucleotide analogues with an achiral peptide backbone. J Am Chem Soc 114:1895–1897CrossRefGoogle Scholar
  28. Egholm M, Buchardt O, Christensen L, Behrens C, Frier SM, Driver DA et al (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen bonding rules. Nature 365:566–568PubMedCrossRefGoogle Scholar
  29. Egholm M, Christensen L, Dueholm KL, Buchardt O, Coull J, Nielsen PE (1995) Efficient pH-independent sequence-specific DNA-binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res 23:217–222PubMedCrossRefGoogle Scholar
  30. Fiandaca MJ, Hyldig-Nielsen JJ, Gildae BD, Coull JM (2001) Self reporting PNA/DNA primers for PCR analysis. Genome Res 11:609–613PubMedCrossRefGoogle Scholar
  31. Geotti-Bianchini P, Beyrath J, Chaloin O, Formaggio F, Bianco A (2008) Design and synthesis of intrinsically cell-penetrating nucleopeptides. Org Biomol Chem 6:3661–3663PubMedCrossRefGoogle Scholar
  32. Gooday GW (1990) In: Kuhn PJ, Trinci AP, Jung MJ, Goosey MW, Copping LG (eds) Biochemistry of cell walls and membranes in fungi, vol 61. Springer, BerlinGoogle Scholar
  33. Hanvey JC, Peffer NJ, Bisi JE (1992) Antisense and antigene properties of peptide nucleic acids. Science 258:1481–1485PubMedCrossRefGoogle Scholar
  34. Hector RF, Zimmer BL, Pappagianis D (1990) Evaluation of nikkomycins X and Z in murine models of coccidioidomycosis, histoplasmosis, and blastomycosis. Antimicrob Agents Chemother 34:587–593PubMedGoogle Scholar
  35. Huang PC (2008) Novel synthesis of alpha-PNA monomers by U-4CR. Amino Acids 34:449–453PubMedCrossRefGoogle Scholar
  36. Hudson RHE, Wojciechowski F (2008) A Fmoc/Boc pseudoisocytosine monomer for peptide nucleic acid synthesis. Can J Chem 86:1026–1029CrossRefGoogle Scholar
  37. Ichikawa Y, Hirata K, Ohbayashi M, Isobe M (2004) Total synthesis of (+)-blasticidin s. Chemistry 10:3241–3251PubMedCrossRefGoogle Scholar
  38. Inaki Y, Tohnai N, Miyabayashi K, Wada T, Miyata M (1998) Isopoly-l-ornithine derivatives of the thymine and thymidine. Nucleos Nucleot Nucl 17:339–350CrossRefGoogle Scholar
  39. Itaya M, Yamaguchi I, Kobayashi K, Endo T, Tanaka T (1990) The blasticidin S resistance gene (bsr) selectable in a single copy state in the Bacillus subtilis chromosome. J Biochem 107:799–801PubMedGoogle Scholar
  40. Katritzky AR, Narindoshvili T (2008) Chiral peptide nucleic acid monomers (PNAM) with modified backbones. Org Biomol Chem 6:3171–3176PubMedCrossRefGoogle Scholar
  41. Kerman K, Matsubara Y, Morita Y, Takamura Y, Tamiya E (2004) Peptide nucleic acid modified magnetic beads for intercalator based electrochemical detection of DNA hybridization. Sci Technol Adv Mater 5:351–357CrossRefGoogle Scholar
  42. Kitamatsu M, Shigeyasu M, Sisido M (2002) Novel peptide nucleic acids that contain pyrrolidine rings of various stereoisomers. In: Peptides 2002, Proceedings of the European peptide symposium 27th, pp 532–533Google Scholar
  43. Knudsen H, Nielsen PE (1996) Antisense properties of duplex- and triplex-forming PNAs Nucl. Acids Res 24:494–500CrossRefGoogle Scholar
  44. Korshunova GA, Ilicheva IA, Sumbatyan NV, Hyun K (1997) Design and synthesis of new types of oligonucleopeptides. Lett Pept Sci 4:473–476Google Scholar
  45. Kristensen I, Larsen PO (1974) gamma-Glutamylwillardiine and gamma-glutamylphenylalanylwillardiine from seeds of Fagus silvatica. Phytochemistry 13:2799–27802CrossRefGoogle Scholar
  46. Kuwahara M, Arimitsu M, Sisido M (1999) Novel peptide nucleic acid that shows high sequence specificity and all-or-none-type hybridization with the complementary DNA. J Am Chem Soc 121:256–257CrossRefGoogle Scholar
  47. Lee HC, Liou K, Kim DH, Kang SY, Woo JS, Sohng JK (2003) Cystocin, a novel antibiotic, produced by Streptomyces sp. GCA0001: biological activities. Arch Pharm Res 26:446–448PubMedCrossRefGoogle Scholar
  48. Lee H, Jeon JH, Lim JC, Choi H, Yoon Y, Kim SK (2007) Peptide nucleic acid synthesis by novel amide formation. Org Lett 9:3291–3293PubMedCrossRefGoogle Scholar
  49. Lenzi A, Reginato G, Taddei M, Trifilieff E (1995) Solid phase synthesis of a self complementary (antiparallel) chiral peptidic nucleic acid strand. Tetrahedron Lett 36:1717–1718CrossRefGoogle Scholar
  50. Lioy E, Kessler H (1996) Synthesis of a new chiral peptide analogue of DNA using ornithine subunits and solid-phase peptide synthesis methodologies. Liebigs Ann 2:201–204Google Scholar
  51. Liu M, Arora SK (2008) Structural investigations of mode of action of drugs: structure and conformation of a novel peptidyl nucleoside antibiotic chryscandin hydrochloride pentahydrate. J Antibiot 61:322–325PubMedCrossRefGoogle Scholar
  52. Mandrugin VA, Sumbatyan NV, Korshunova GA (2002) Solid phase synthesis of new heterorganic nucleopeptides based on a delta-ornithine backbone. In: Peptides 2002, Proceedings of the European peptide symposium 27th, pp 216–217Google Scholar
  53. Matsumura S, Takahashi T, Ueno A, Mihara H (2003) Complementary nucleobase interaction enhances peptide-peptide recognition and self-replicating catalysis. Chemistry 9:4829–4837PubMedCrossRefGoogle Scholar
  54. McMinn DL, Greenberg MM (1999) Convergent solution-phase synthesis of a nucleopeptide using a protected oligonucleotide. Bioorg Med Chem Lett 9:547–550PubMedCrossRefGoogle Scholar
  55. Meierhenrich UJ, Muñoz Caro GM, Bredehöft JH, Jessberger EK, Thiemann WHP (2004) Identification of diamino acids in the Murchison meteorite. Proc Natl Acad Sci USA 101:9182–9186PubMedCrossRefGoogle Scholar
  56. Merrifield B (1986) Solid-phase synthesis. Science 232:341–347PubMedCrossRefGoogle Scholar
  57. Musumeci D, Roviello GN, Valente M, Sapio R, Pedone C, Bucci EM (2004) New synthesis of PNA-3′DNA linker monomers, useful building blocks to obtain PNA/DNA chimeras. Biopolymers 76:535–542PubMedCrossRefGoogle Scholar
  58. Nielsen PE (1993) Peptide nucleic acid (PNA): a model structure for the primordial genetic material? Orig Life Evol Biosph 23:323–327PubMedCrossRefGoogle Scholar
  59. Nielsen PE (1999a) Peptide nucleic acids as therapeutic agents. Curr Opin Struct Biol 9:353–357PubMedCrossRefGoogle Scholar
  60. Nielsen PE (1999b) Peptide nucleic acid. A molecule with two identities. Acc Chem Res 32:624–630CrossRefGoogle Scholar
  61. Nielsen PE, Egholm M (1999) An introduction to peptide nucleic acid. Curr Issues Mol Biol 1:89–104PubMedGoogle Scholar
  62. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500PubMedCrossRefGoogle Scholar
  63. Nielsen PE, Egholm M, Berg RH, Buchardt O (1993) Peptide nucleic acids (PNAs): potential antisense and antigene agents. Anticancer Drug Des 8:53–63PubMedGoogle Scholar
  64. Nielsen PE, Egholm M, Buchardt O (1994) Sequence-specific transcription arrest by peptide nucleic acid bound to the DNA template strand. Gene 149:139–145PubMedCrossRefGoogle Scholar
  65. Nix DE, Swezey RR, Hector R, Galgiani JN (2009) Pharmacokinetics of nikkomycin z after single rising oral doses. Antimicrob Agents Chemother 53:2517–2521PubMedCrossRefGoogle Scholar
  66. Nollet AJH, Hutino CM, Pandit UK (1969) Unconventional nucleotide analogues-I(N9-purinyl alpha-amino acids). Tetrahedron 25:5971–5981PubMedCrossRefGoogle Scholar
  67. Oguma T, Ono T, Kajiwara T, Sato M, Miyahira Y, Arino H, Yoshihara Y, Tadakuma T (2009) CD4(+)CD8(+) thymocytes are induced to cell death by a small dose of puromycin via ER stress. Cell Immunol 260:21–27PubMedCrossRefGoogle Scholar
  68. Ortiz E, Estrada G, Lizardi PM (1998) PNA molecular beacons for rapid detection of PCR amplicons. Mol Cell Probes 12:219–226PubMedCrossRefGoogle Scholar
  69. Orum H, Nielsen PE, Egholm M, Berg RH, Buchardt O, Stanley C (1993) Single base pair mutation analysis by PNA directed PCR clamping. Nucleic Acids Res 21:5332–5336PubMedCrossRefGoogle Scholar
  70. Orum H, Nielsen PE, Jorgensen M, Larsson C, Stanley C, Koch T (1995) Sequence-specific purification of nucleic acids by PNA-controlled hybrid selection. BioTechnique 19:472–480Google Scholar
  71. Perry-O’Keefe H, Yao XW, Coull JM, Fuchs M, Egholm M (1996) Peptide nucleic acid pre-gel hybridization: an alternative to Southern hybridization. Proc Natl Acad Sci USA 93:14670–14675PubMedCrossRefGoogle Scholar
  72. Petersen KH, Buchardt O, Nielsen PE (1996) Synthesis and oligomerization of N delta-Boc-N alpha-(thymin-1-ylacetyl)ornithine. Bioorg Med Chem Lett 6:793–796CrossRefGoogle Scholar
  73. Plant A, Thompson P, Williams DM (2009) Application of the Ugi reaction for the one-pot synthesis of uracil polyoxin C analogues. J Org Chem 74:4870–4873PubMedCrossRefGoogle Scholar
  74. Pothukanuri S, Pianowski Z, Winssinger N (2008) Expanding the scope and orthogonality of PNA synthesis. Eur J Org Chem 18:3141–3148CrossRefGoogle Scholar
  75. Raukas E, Kooli K, Raim T, Lidaks M, Krisane V, Paegle R, Lulle I (1982) Interaction of oligopeptides containing residues of dl-beta-(uracilyl-1)-, dl-beta-(adeninyl-9)-alpha-alanines and lysines with poly(A) and DNA. Stud Biophys 89:187–195Google Scholar
  76. Rebuffat AG, Nawrocki AR, Nielsen PE et al (2002) Gene delivery by a steroid-peptide nucleic acid conjugate. FASEB J 16:1426–1428PubMedGoogle Scholar
  77. Roviello GN, Moccia M, Sapio R, Valente M, Bucci EM, Castiglione M, Pedone C, Perretta G, Benedetti E, Musumeci D (2006) Synthesis, characterization and hybridization studies of new nucleo-gamma-peptides based on diaminobutyric acid. J Pept Sci 12:829–835PubMedCrossRefGoogle Scholar
  78. Roviello GN, Musumeci D, Moccia M, Castiglione M, Sapio R, Valente M, Bucci EM, Perretta G, Pedone C (2007) dabPNA: design, synthesis, and DNA binding studies. Nucleosides Nucleotides Nucleic Acids 26:1307–1310PubMedCrossRefGoogle Scholar
  79. Roviello GN, Musumeci D, Bucci EM, Castiglione M, Cesarani A, Pedone C, Piccialli G (2008a) Evidences for complex formation between l-dabPNA and aegPNA. Bioorg Med Chem Lett 18:4757–4760PubMedCrossRefGoogle Scholar
  80. Roviello GN, Musumeci D, Bucci EM, Castiglione M, Pedone C, Benedetti E, Sapio R, Valente M (2008b) Further studies on nucleopeptides with DABA-based backbone. Chem Eng Trans 14:393–400Google Scholar
  81. Roviello GN, Musumeci D, Castiglione M, Bucci EM, Pedone C, Benedetti E (2009a) Solid phase synthesis and RNA-binding studies of a serum-resistant nucleo-epsilon-peptide. J Pept Sci 15:155–160PubMedCrossRefGoogle Scholar
  82. Roviello GN, Musumeci D, Moccia M, Castiglione M, Cesarani A, Bucci EM, Saviano M, Pedone C, Benedetti E (2009b) Evidences of complex formation between DABA-based nucleo-gamma-peptides with alternate configuration backbone. J Pept Sci 15:147–154PubMedCrossRefGoogle Scholar
  83. Roviello GN, Gröschel S, Pedone C, Diederichsen U (2009c) Synthesis of novel MMT/acyl-protected nucleo alanine monomers for the preparation of DNA/alanyl-PNA chimeras. Amino Acids. doi: 10.1007/s00726-009-0324-x
  84. Roviello GN, Gaetano SD, Capasso D, Cesarani A, Bucci EM, Pedone C (2009d) Synthesis, spectroscopic studies and biological activity of a novel nucleopeptide with Moloney murine leukemia virus reverse transcriptase inhibitory activity. Amino Acids. doi: 10.1007/s00726-009-0361-5
  85. Roviello GN, Musumeci D, De Cristofaro A, Capasso D, Di Gaetano S, Bucci EM, Pedone C (2010a) Alternate dab-aegPNAs: synthesis, nucleic acid binding studies and biological activity. Mol Biosyst 6:189–195CrossRefGoogle Scholar
  86. Roviello GN, Musumeci D, Pedone C, Bucci EM (2010b) Synthesis, characterization and hybridization studies of an alternate nucleo-epsilon/gamma-peptide: complexes formation with natural nucleic acids. Amino Acids 38:103–111PubMedCrossRefGoogle Scholar
  87. Roviello GN, Crescenzo C, Capasso D, Di Gaetano S, Franco S, Bucci EM, Pedone C (2010c) Synthesis of a novel Fmoc-protected nucleoaminoacid for the solid phase assembly of 4-piperidyl glycine/l-arginine-containing nucleopeptides and preliminary RNA interaction studies. Amino Acids. doi: 10.1007/S00726-010-0532-4
  88. Sandovsky-Losica H, Shwartzman R, Lahat Y, Segal E (2008) Antifungal activity against Candida albicans of nikkomycin Z in combination with caspofungin, voriconazole or amphotericin B. J Antimicrob Chemoth 62:635–637CrossRefGoogle Scholar
  89. Sforza S, Galaverna G, Dossena A, Corradini R, Marchelli R (2002) Role of chirality and optical purity in nucleic acid recognition by PNA and PNA analogs. Chirality 14:591–598PubMedCrossRefGoogle Scholar
  90. Shvachkin YP, Mishin GP, Korshunova GA (1982) Advances and prospects in the chemistry of nucleoaminoacids and nucleopeptides. Russ Chem Rev 51:178–188CrossRefGoogle Scholar
  91. Simmons CG, Pitts AE, Mayfield LD, Shay JW, Corey DR (1997) Synthesis and permeability of PNA-peptide conjugates. Bioorg Med Chem Lett 7:3001–3007CrossRefGoogle Scholar
  92. Socher E, Bethge L, Knoll A, Jungnick N, Herrmann A, Seitz O (2008) Low-noise stemless PNA beacons for sensitive DNA and RNA detection. Angew Chem Int Ed Engl 47:9555–9559PubMedCrossRefGoogle Scholar
  93. Soukchareun S, Tregear GW, Haralambidis J (1995) Preparation and characterization of antisense oligonucleotide-peptide hybrids containing viral fusion peptides. Bioconj Chem 6:43–53CrossRefGoogle Scholar
  94. Strasdeit H (2005) New studies on the Murchison meteorite shed light on the pre-RNA world. Chembiochem 6:801–803PubMedCrossRefGoogle Scholar
  95. Svensen N, Diaz-Mochon JJ, Bradley M (2008) Microwave-assisted orthogonal synthesis of PNA–peptide conjugates. Tetrahedron Lett 49:6498–6500CrossRefGoogle Scholar
  96. Takemoto K (1985) Nucleic acid analogs: conformation and their functionalities Macromol. Chem Suppl 12:293–301CrossRefGoogle Scholar
  97. Thomson SA, Josey JA, Cadilla R, Gaul MD, Hassman CF, Luzzio MJ et al (1995) Fmoc mediated synthesis of peptide nucleic acids. Tetrahedron 51:6179–6194CrossRefGoogle Scholar
  98. Toure BB, Hall DG (2009) Natural product synthesis using multicomponent reaction strategies. Chem Rev 109:4439–4486PubMedCrossRefGoogle Scholar
  99. Turner JJ, Jones S, Fabani MM, Ivanova G, Arzumanov AA, Gait MJ (2007) RNA targeting with peptide conjugates of oligonucleotides, siRNA and PNA. Blood Cells Mol Dis 38:1–7PubMedCrossRefGoogle Scholar
  100. Uhlmann E, Peyman A, Breipohl G, Will D (1998) PNA: synthetic polyamide nucleic acids with unusual binding properties. Angew Chem Int Ed 37:2796–2823CrossRefGoogle Scholar
  101. van der Laan AC, van Amsterdam I, Tesser GI, van Boom JH, Kuyl-Yeheskiely E (1998) Synthesis of chirally pure ornithine based PNA analogues. Nucleoside Nucleotide Nucleic Acid 17:219–231CrossRefGoogle Scholar
  102. Veselkov AG, Demidov V, Nielsen PE, Frank-Kamenetskii MD (1996) A new class of genome rare cutters. Nucleic Acids Res 24:2483–2487PubMedCrossRefGoogle Scholar
  103. Villa R, Folini M, Lualdi S, Veronese S, Daidone MG, Zaffaroni N (2000) Inhibition of telomerase activity by a cell-penetrating peptide nucleic acid construct in human melanoma cells. FEBS Lett 473:241–248PubMedCrossRefGoogle Scholar
  104. Weiss A, Diederichsen U (2007) Uniformly nucleobase functionalized ß-peptide helices: Watson–Crick pairing of non-specific aggregation. Eur J Org Chem 5531–5539Google Scholar
  105. Wojciechowski F, Hudson RHE (2007) Nucleobase Modifications in Peptide Nucleic Acids. Curr Top Med Chem 7:667–679PubMedCrossRefGoogle Scholar
  106. Yamaguchi H, Tanaka N (1966) Inhibition of protein synthesis by blasticidin S. II. Studies on the site of action in E. coli polypeptide synthesizing systems. J Biochem 60:632–642PubMedGoogle Scholar
  107. Yamashita M, Tsurumi Y, Hosoda J, Komori T, Kohsaka M, Imanaka H (1984) Chryscandin, a novel peptidyl nucleoside antibiotic. I. Taxonomy, fermentation, isolation and characterization. J Antibiot 37:1279–1283PubMedGoogle Scholar
  108. Yamazaki T, Komatsu K, Umemiya H, Hashimoto Y, Shudo K, Kagechika H (1997) Dinucleotide-analogous tetrapeptides. Specific triplex formation with complementary polynucleotides. Tetrahedron Lett 38:8363–8366CrossRefGoogle Scholar
  109. Zhou P, Wang M, Du L, Fisher GW, Waggoner A, Ly DH (2003) Novel binding and efficient cellular uptake of guanidine-based peptide nucleic acids (GPNA). J Am Chem Soc 125:6878–6879PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Giovanni N. Roviello
    • 1
  • Ettore Benedetti
    • 2
  • Carlo Pedone
    • 1
  • Enrico M. Bucci
    • 1
  1. 1.Istituto di Biostrutture e BioimmaginiConsiglio Nazionale delle RicercheNaplesItaly
  2. 2.Department of Scienze Biologiche sez. BiostruttureUniversità degli Studi di Napoli ‘Federico II’NaplesItaly

Personalised recommendations