Amino Acids

, Volume 40, Issue 1, pp 113–122 | Cite as

Peptidomic analysis of the skin secretions of the frog Pachymedusa dacnicolor

  • Erika P. Meneses
  • Oscar Villa-Hernández
  • Lorena Hernández-Orihuela
  • Ruben Castro-Franco
  • Victoria Pando
  • Manuel B. Aguilar
  • Cesar Vicente Ferreira Batista
Original article

Abstract

High-resolution mass spectrometry-based peptidomics has been used to characterize several components in electro-stimulated skin secretions of the endemic Mexican frog Pachymedusa dacnicolor. Peptide mass screening performed in an Orbitrap-XL mass spectrometer showed that P. dacnicolor skin secretions possess 194 different components with molecular masses ranging mainly from 500 to 6,000 Da. Dozens of molecules were partially sequenced including two novel protease inhibitors. Additionally, one posttranslationally modified bradykinin and two novel dermaseptin-like antimicrobial peptides were fully sequenced. The novel peptide named here DMS-DA5 was fully characterized and showed potent antibacterial activity against various bacteria such as Escherichia coli, Bacillus subtilis, Salmonella enterica serovar typhimurium, and Pseudomonas aeruginosa with minimal inhibitory concentrations from 3.10 to 25.0 μM.

Keywords

Frog skin Antibacterial peptides Peptidomics Mass spectrometry 

Notes

Acknowledgments

This research was supported by grant from the Dirección General de Asuntos del Personal Académico (DGAPA) of the National Autonomous University of Mexico-UNAM (Grant number IN221508 to CVFB).

References

  1. Amiche M, Ladram A, Nicolas P (2008) A consistent nomenclature of antimicrobial peptides isolated from frogs of the subfamily Phyllomedusinae. Peptides 29(11):2074–2082CrossRefPubMedGoogle Scholar
  2. Armirotti A, Scapolla C, Benatti U, Damonte G (2007) Electrospray ionization ion trap multiple-stage mass spectrometric fragmentation pathways of leucine and isoleucine: an ab initio computational study. Rapid Commun Mass Spectrom 21(19):3180–3184CrossRefPubMedGoogle Scholar
  3. Auvynet C, Joanne P, Bourdais J, Nicolas P, Lacombe C, Rosenstein Y (2009) Dermaseptin DA4, although closely related to dermaseptin B2, presents chemotactic and Gram-negative selective bactericidal activities. FEBS J 276(22):6773–6786CrossRefPubMedGoogle Scholar
  4. Batista CV, da Silva LR, Sebben A, Scaloni A, Ferrara L, Paiva GR, Olamendi-Portugal T, Possani LD, Bloch C Jr (1999) Antimicrobial peptides from the Brazilian frog Phyllomedusa distincta. Peptides 20(6):679–686CrossRefPubMedGoogle Scholar
  5. Batista CV, D’Suze G, Gómez-Lagunas F, Zamudio FZ, Encarnación S, Sevcik C, Possani LD (2006) Proteomic analysis of Tityus discrepans scorpion venom and amino acid sequence of novel toxins. Proteomics 6(12):3718–3727CrossRefPubMedGoogle Scholar
  6. Batista CV, Román-González SA, Salas-Castillo SP, Zamudio FZ, Gómez-Lagunas F, Possani LD (2007) Proteomic analysis of the venom from the scorpion Tityus stigmurus: biochemical and physiological comparison with other Tityus species. Comp Biochem Physiol C Toxicol 146(1–2):147–157CrossRefGoogle Scholar
  7. Chen T, Orr DF, O’Rourke M, McLynn C, Bjourson AJ, McClean S, Hirst D, Rao P, Shaw C (2004) Pachymedusa dacnicolor tryptophyllin-1: structural characterization, pharmacological activity and cloning of precursor cDNA. Regul Pept 117(1):25–32CrossRefPubMedGoogle Scholar
  8. Conlon JM (2004) The therapeutic potential of antimicrobial peptides from frog skin. Rev Med Micro 15:17–25Google Scholar
  9. Conlon JM, Iwamuro S, King JD (2009) Dermal cytolytic peptides and the system of innate immunity in anurans. Ann N Y Acad Sci 1163:75–82CrossRefPubMedGoogle Scholar
  10. Frost, DR (2009) Amphibian species of the world: an online reference. Version 5.3. Electronic database accessible at http://research.amnh.org/vz/herpetology/amphibia/index.php, American Museum of Natural History, New York, USA
  11. Gottler LM, Ramamoorthy A (2009) Structure, membrane orientation, mechanism, and function of pexiganan—a highly potent antimicrobial peptide designed from magainin. Biochim Biophys Acta 1788(8):1680–1686CrossRefPubMedGoogle Scholar
  12. Hancock RE, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16:82–88CrossRefPubMedGoogle Scholar
  13. Mahalka AK, Kinnunen P (2009) Binding of amphipathic α-helical antimicrobial peptides to lipid membranes: lessons from temporins B and L. Biochim Biophys Acta 1788:1600–1609CrossRefPubMedGoogle Scholar
  14. National Committee for Clinical Laboratory Standards (1997) Methods for dilution antimicrobial susceptibility tests for bacteria that grow, aerobically, approved standard M7-A4. NCCLS, Wayne, PAGoogle Scholar
  15. Nicolas P, El Amri C (2009) The dermaseptin superfamily: a gene-based combinatorial library of antimicrobial peptides. Biochim Biophys Acta 1788:1537–1550CrossRefPubMedGoogle Scholar
  16. Nicolas P, Rosenstein Y (2009) Multifunctional host defense peptides. FEBS J 276(22):6464Google Scholar
  17. Olamendi-Portugal T, Batista CV, Restano-Cassulini R, Pando V, Villa-Hernandez O, Zavaleta-Martínez-Vargas A, Salas-Arruz MC, Rodríguez de la Vega RC, Becerril B, Possani LD (2008) Proteomic analysis of the venom from the fish eating coral snake Micrurus surinamensis: novel toxins, their function and phylogeny. Proteomics 8(9):1919–1932CrossRefPubMedGoogle Scholar
  18. Rydlo T, Rotem S, Mor A (2006) Antibacterial properties of dermaseptin S4 derivatives under extreme incubation conditions. Antimicrob Agents Chemother 50(2):490–497CrossRefPubMedGoogle Scholar
  19. Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipids bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70CrossRefPubMedGoogle Scholar
  20. Thompson AH, Bjourson AJ, Orr DF, Shaw C, McClean S (2007) Amphibian skin secretomics: application of parallel quadrupole time-of-flight mass spectrometry and peptide precursor cDNA cloning to rapidly characterize the skin secretory peptidome of Phyllomedusa hypochondrialis azurea: discovery of a novel peptide family, the hyposins. J Proteome Res 6(9):3604–3613CrossRefPubMedGoogle Scholar
  21. Wang L, Zhou M, Chen T, Walker B, Shaw C (2009) PdT-2: a novel myotropic type-2 tryptophyllin from the skin secretion of the Mexican giant leaf frog, Pachymedusa dacnicolor. Peptides 30(8):1557–1561CrossRefPubMedGoogle Scholar
  22. Wang M, Wang Y, Wang A, Song Y, Ma D, Yang H, Ma Y, Lai R (2010) Five novel antimicrobial peptides from skin secretions of the frog, Amolops loloensis. Comp Biochem Physiol B Biochem Mol Biol 155(1):72–76CrossRefPubMedGoogle Scholar
  23. Wechselberger C (1998) Cloning of cDNAs encoding new peptides of the dermaseptin family. Biochim Biophys Acta 1388:279–283PubMedGoogle Scholar
  24. Zairi A, Tangy F, Bouassida K, Hani K (2009) Dermaseptins and magainins: antimicrobial peptides from frogs’ skin-new sources for a promising spermicides microbicides—a mini review. J Biomed Biotechnol 2009:452–567 PMID: 19893636 [PubMed-in process]Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Erika P. Meneses
    • 1
  • Oscar Villa-Hernández
    • 1
  • Lorena Hernández-Orihuela
    • 1
  • Ruben Castro-Franco
    • 2
  • Victoria Pando
    • 3
  • Manuel B. Aguilar
    • 4
  • Cesar Vicente Ferreira Batista
    • 1
  1. 1.Unidad de Proteómica-Instituto de BiotecnologíaUniversidad Nacional Autónoma de México (UNAM)CuernavacaMexico
  2. 2.Lab. HerpetologíaCentro de Investigaciones Biológicas, UAEMCuernavacaMexico
  3. 3.Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud PúblicaCuernavacaMexico
  4. 4.Laboratorio de Neurofarmacología Marina, Departamento de Neurobiologia Celular y MolecularInstituto de Neurobiología, UNAMJuriquillaMexico

Personalised recommendations