Advertisement

Amino Acids

, Volume 39, Issue 4, pp 1013–1021 | Cite as

Comparative metabolomics charts the impact of genotype-dependent methionine accumulation in Arabidopsis thaliana

  • Miyako Kusano
  • Atsushi Fukushima
  • Henning Redestig
  • Makoto Kobayashi
  • Hitomi Otsuki
  • Hitoshi Onouchi
  • Satoshi Naito
  • Masami Yokota Hirai
  • Kazuki Saito
Original Article

Abstract

Methionine (Met) is an essential amino acid for all organisms. In plants, Met also functions as a precursor of plant hormones, polyamines, and defense metabolites. The regulatory mechanism of Met biosynthesis is highly complex and, despite its great importance, remains unclear. To investigate how accumulation of Met influences metabolism as a whole in Arabidopsis, three methionine over-accumulation (mto) mutants were examined using a gas chromatography–mass spectrometry-based metabolomics approach. Multivariate statistical analyses of the three mto mutants (mto1, mto2, and mto3) revealed distinct metabolomic phenotypes. Orthogonal projection to latent structures–discriminant analysis highlighted discriminative metabolites contributing to the separation of each mutant and the corresponding control samples. Though Met accumulation in mto1 had no dramatic effect on other metabolic pathways except for the aspartate family, metabolite profiles of mto2 and mto3 indicated that several extensive pathways were affected in addition to over-accumulation of Met. The pronounced changes in metabolic pathways in both mto2 and mto3 were associated with polyamines. The findings suggest that our metabolomics approach not only can reveal the impact of Met over-accumulation on metabolism, but also may provide clues to identify crucial pathways for regulation of metabolism in plants.

Keywords

mto Metabolite profiling Polyamines Multivariate statistical analysis 

Notes

Acknowledgments

We thank Drs. Par Jonsson, Hans Stenlund and Thomas Moritz of UPSC, Sweden, for kindly providing the custom software for data pretreatment. The authors gratefully acknowledge the skilled technical assistance of Ms. Saeko Yasokawa and Ms. Eriko Tanaka of Hokkaido University, Sapporo, Japan. This research was supported by grants from the Japan Science and Technology Agency, CREST (project name: ‘Elucidation of Amino Acid Metabolism in Plants based on Integrated Omics Analyses’).

Supplementary material

726_2010_562_MOESM1_ESM.xls (124 kb)
Supplementary Data 1 (XLS 124 kb)
726_2010_562_MOESM2_ESM.ppt (415 kb)
Supplementary Fig 1 Phenotypes of 18-day-old plants grown under a 16 h light/8 h dark photoperiod. To evaluate the difference derived from plates, we grew common WT plants (Col-0, ‘Col-0_R’) on each plate (PPT 415 kb)
726_2010_562_MOESM3_ESM.xls (52 kb)
Supplementary Table 1 (XLS 51 kb)
726_2010_562_MOESM4_ESM.xls (25 kb)
Supplementary Table 2 (XLS 25 kb)

References

  1. Azevedo RA, Lancien M, Lea PJ (2006) The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids 30:143–162CrossRefPubMedGoogle Scholar
  2. Bartlem D, Lambein I, Okamoto T, Itaya A, Uda Y, Kijima F, Tamaki Y, Nambara E, Naito S (2000) Mutation in the threonine synthase gene results in an over-accumulation of soluble methionine in Arabidopsis. Plant Physiol 123:101–110CrossRefPubMedGoogle Scholar
  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B 57:289–300Google Scholar
  4. Bylesjo M, Rantalainen M, Cloarec O, Nicholson J, Holmes E, Trygg J (2006) OPLS discriminant analysis, combining the strengths of PLS-DA and SIMCA classification. J Chemom 20:341–351CrossRefGoogle Scholar
  5. Catchpole GS, Beckmann M, Enot DP, Mondhe M, Zywicki B, Taylor J, Hardy N, Smith A, King RD, Kell DB, Fiehn O, Draper J (2005) Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc Natl Acad Sci USA 102:14458–14462CrossRefPubMedGoogle Scholar
  6. Chiba Y, Ishikawa M, Kijima F, Tyson RH, Kim J, Yamamoto A, Nambara E, Leustek T, Wallsgrove RM, Naito S (1999) Evidence for autoregulation of cystathionine gamma-synthase mRNA stability in Arabidopsis. Science 286:1371–1374CrossRefPubMedGoogle Scholar
  7. Fukushima A, Kusano M, Nakamichi N, Kobayashi M, Hayashi N, Sakakibara H, Mizuno T, Saito K (2009a) Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination. Proc Natl Acad Sci USA 106:7251–7256CrossRefPubMedGoogle Scholar
  8. Fukushima A, Kusano M, Redestig H, Arita M, Saito K (2009b) Integrated omics approaches in plant systems biology. Curr Opin Chem Biol 13:532–538CrossRefPubMedGoogle Scholar
  9. Goto DB, Naito S (2002) AtMRD1 and AtMRU1, two novel genes with altered mRNA levels in the methionine over-accumulating mto1-1 mutant of Arabidopsis thaliana. Plant Cell Physiol 43:923–931CrossRefPubMedGoogle Scholar
  10. Goto DB, Ogi M, Kijima F, Kumagai T, van Werven F, Onouchi H, Naito S (2002) A single-nucleotide mutation in a gene encoding S-adenosylmethionine synthetase is associated with methionine over-accumulation phenotype in Arabidopsis thaliana. Genes Genet Syst 77:89–95CrossRefPubMedGoogle Scholar
  11. Goto DB, Onouchi H, Naito S (2005) Dynamics of methionine biosynthesis. Plant Biotechnol 22:379–388Google Scholar
  12. Hall RD (2006) Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytol 169:453–468CrossRefPubMedGoogle Scholar
  13. Hesse H, Hoefgen R (2003) Molecular aspects of methionine biosynthesis. Trends Plant Sci 8:259–262CrossRefPubMedGoogle Scholar
  14. Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci USA 104:6478–6483CrossRefPubMedGoogle Scholar
  15. Inaba K, Fujiwara T, Hayashi H, Chino M, Komeda Y, Naito S (1994) Isolation of an Arabidopsis thaliana mutant, mto1, that overaccumulates soluble methionine (temporal and spatial patterns of soluble methionine accumulation). Plant Physiol 104:881–887PubMedGoogle Scholar
  16. Jonsson P, Johansson ES, Wuolikainen A, Lindberg J, Schuppe-Koistinen I, Kusano M, Sjostrom M, Trygg J, Moritz T, Antti H (2006) Predictive metabolite profiling applying hierarchical multivariate curve resolution to GC-MS data—a potential tool for multi-parametric diagnosis. J Proteome Res 5:1407–1414CrossRefPubMedGoogle Scholar
  17. Jonsson P, Johansson AI, Gullberg J, Trygg J, A J, Grung B, Marklund S, Sjostrom M, Antti H, Moritz T (2005) High-throughput data analysis for detecting and identifying differences between samples in GC/MS-based metabolomic analyses. Anal Chem 77:5635–5642Google Scholar
  18. Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21:1635–1638CrossRefPubMedGoogle Scholar
  19. Kusano M, Fukushima A, Arita M, Jonsson P, Moritz T, Kobayashi M, Hayashi N, Tohge T, Saito K (2007) Unbiased characterization of genotype-dependent metabolic regulations by metabolomic approach in Arabidopsis thaliana. BMC Syst Biol 1:53CrossRefPubMedGoogle Scholar
  20. Le Gall G, Colquhoun IJ, Davis AL, Collins GJ, Verhoeyen ME (2003) Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. J Agric Food Chem 51:2447–2456CrossRefPubMedGoogle Scholar
  21. Levandi T, Leon C, Kaljurand M, Garcia-Canas V, Cifuentes A (2008) Capillary electrophoresis time-of-flight mass spectrometry for comparative metabolomics of transgenic versus conventional maize. Anal Chem 80:6329–6335CrossRefPubMedGoogle Scholar
  22. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273CrossRefPubMedGoogle Scholar
  23. Okazaki Y, Shimojima M, Sawada Y, Toyooka K, Narisawa T, Mochida K, Tanaka H, Matsuda F, Hirai A, Hirai MY, Ohta H, Saito K (2009) A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis. Plant Cell 21:892–909CrossRefPubMedGoogle Scholar
  24. Oksman-Caldentey KM, Saito K (2005) Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr Opin Biotechnol 16:174–179CrossRefPubMedGoogle Scholar
  25. Onouchi H, Nagami Y, Haraguchi Y, Nakamoto M, Nishimura Y, Sakurai R, Nagao N, Kawasaki D, Kadokura Y, Naito S (2005) Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis. Genes Dev 19:1799–1810CrossRefPubMedGoogle Scholar
  26. Redestig H, Fukushima A, Stenlund H, Moritz T, Arita M, Saito K, Kusano M (2009) Compensation for systematic cross-contribution improves normalization of mass spectrometry based metabolomics data. Anal Chem 81:7974–7980CrossRefPubMedGoogle Scholar
  27. Rinder J, Casazza AP, Hoefgen R, Hesse H (2008) Regulation of aspartate-derived amino acid homeostasis in potato plants (Solanum tuberosum L.) by expression of E. coli homoserine kinase. Amino Acids 34:213–222CrossRefPubMedGoogle Scholar
  28. Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forbes MG, Willmitzer L, Fernie AR, Kopka J (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett 579:1332–1337CrossRefPubMedGoogle Scholar
  29. Shen B, Li C, Tarczynski MC (2002) High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-l-methionine synthetase 3 gene. Plant J 29:371–380CrossRefPubMedGoogle Scholar
  30. Suzuki A, Shirata Y, Ishida H, Chiba Y, Onouchi H, Naito S (2001) The first exon coding region of cystathionine gamma-synthase gene is necessary and sufficient for downregulation of its own mRNA accumulation in transgenic Arabidopsis thaliana. Plant Cell Physiol 42:1174–1180CrossRefPubMedGoogle Scholar
  31. Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939CrossRefPubMedGoogle Scholar
  32. Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6:469–479CrossRefPubMedGoogle Scholar
  33. Weckwerth W, Loureiro ME, Wenzel K, Fiehn O (2004) Differential metabolic networks unravel the effects of silent plant phenotypes. Proc Natl Acad Sci USA 101:7809–7814CrossRefPubMedGoogle Scholar
  34. Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17CrossRefPubMedGoogle Scholar
  35. Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H, Niida R, Watanabe-Takahashi A, Inoue E, Saito K (2008) Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. Plant Cell 20:2160–2176CrossRefPubMedGoogle Scholar
  36. Zhang P, Foerster H, Tissier CP, Mueller L, Paley S, Karp PD, Rhee SY (2005) MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant Physiol 138:27–37CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Miyako Kusano
    • 1
    • 2
  • Atsushi Fukushima
    • 1
    • 2
  • Henning Redestig
    • 1
  • Makoto Kobayashi
    • 1
  • Hitomi Otsuki
    • 1
  • Hitoshi Onouchi
    • 2
    • 3
  • Satoshi Naito
    • 3
    • 4
  • Masami Yokota Hirai
    • 1
    • 2
  • Kazuki Saito
    • 1
    • 5
  1. 1.RIKEN Plant Science CenterYokohamaJapan
  2. 2.JST, CRESTKawaguchiJapan
  3. 3.Division of Applied Bioscience, Graduate School of AgricultureHokkaido UniversitySapporoJapan
  4. 4.Division of Life Science, Graduate School of Life ScienceHokkaido UniversitySapporoJapan
  5. 5.Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan

Personalised recommendations