Advertisement

Amino Acids

, Volume 39, Issue 5, pp 1201–1215 | Cite as

Utilization of amino acids by bacteria from the pig small intestine

  • Zhao-Lai Dai
  • Jing Zhang
  • Guoyao Wu
  • Wei-Yun Zhu
Original Article

Abstract

This study determined the utilization of amino acids (AA) by bacteria from the lumen of the pig small intestine. Digesta samples from different segments of the small intestine were inoculated into media containing 10 mmol/L each of select AA (l-lysine, l-threonine, l-arginine, l-glutamate, l-histidine, l-leucine, l-isoleucine, l-valine, l-proline, l-methionine, l-phenylalanine or l-tryptophan) and incubated for 24 h. The previous 24-h culture served as an inoculum for a subsequent 24-h subculture during each of 30 subcultures. Results of the in vitro cultivation experiment indicated that the 24-h disappearance rates for lysine, arginine, threonine, glutamate, leucine, isoleucine, valine or histidine were 50–90% in the duodenum, jejunum or ileum groups. After 30 subcultures, the 24-h disappearance rates for lysine, threonine, arginine or glutamate remained greater than 50%. The denaturing gradient gel electrophoresis analysis showed that Streptococcus sp., Mitsuokella sp., and Megasphaera elsdenii-like bacteria were predominant in subcultures for utilizing lysine, threonine, arginine and glutamate. In contrast, Klebsiella sp. was not a major user of arginine or glutamate. Furthermore, analysis of AA composition and the incorporation of AA into polypeptides indicated that protein synthesis was a major pathway for AA metabolism in all the bacteria studied. The current work identified the possible predominant bacterial species responsible for AA metabolism in the pig small intestine. The findings provide a new framework for future studies to characterize the metabolic fate of AA in intestinal microbes and define their nutritional significance for both animals and humans.

Keywords

Pig Small intestine Metabolism Bacterial community 

Abbreviations

AA

Amino acids

BCAA

Branched-chain amino acids

DGGE

Denaturing gradient gel electrophoresis

PCR

Polymerase chain reaction

PDV

Portal-drained viscera

Notes

Acknowledgments

This work was supported by the Natural Science Foundation of China (30810103909), the National Basic Research Program of China (2004CB117500-4), and Texas AgriLife Research Hatch Project (H-8200).

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Baker DH (2009) Advances in protein-amino acid nutrition of poultry. Amino Acids 37:29–41CrossRefPubMedGoogle Scholar
  3. Bergen WG, Wu G (2009) Intestinal nitrogen recycling and utilization in health and disease. J Nutr 139:821–825CrossRefPubMedGoogle Scholar
  4. Blachier F, Mariotti F, Huneau JF, Tomé D (2007) Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 33:547–562CrossRefPubMedGoogle Scholar
  5. Blachier F, Lancha AH Jr, Boutry C, Tomé D (2010) Alimentary proteins, amino acids and cholesterolemia. Amino Acids 38:15–22CrossRefPubMedGoogle Scholar
  6. Booijink CCGM (2009) Analysis of diversity and function of the human small intestinal microbiota. Thesis, Wageningen University Press, The NetherlandsGoogle Scholar
  7. Booijink CCGM, Zoetendal EG, Kleerebezem M, de Vos WM (2007) Microbial community in the human small intestine: coupling diversity to metagenomics. Future Microbiol 2:285–295CrossRefPubMedGoogle Scholar
  8. Burrin DG, Reeds PJ (1997) Alternative fuels in the gastrointestinal tract. Curr Opin Gastroenterol 13:165–170CrossRefGoogle Scholar
  9. Chassard C, Scott KP, Marquet P, Martin JC, Del’homme C, Dapoigny M, Flint HJ, Bernalier-Donadille A (2008) Assessment of metabolic diversity within the intestinal microbiota from healthy humans using combined molecular and cultural approaches. FEMS Microbiol Ecol 66:496–504CrossRefPubMedGoogle Scholar
  10. Chen LX, Yin YL, Jobgen WS, Jobgen SC, Knabe DA, Hu W, Wu G (2007) In vitro oxidation of essential amino acids by jejunal mucosal cells of growing pigs. Livest Sci 109:19–23CrossRefGoogle Scholar
  11. Chen LX, Li P, Wang JJ, Li XL, Gao HJ, Yin YL, Hou YQ, Wu G (2009) Catabolism of nutritionally essential amino acids in developing porcine enterocytes. Amino Acids 37:143–152CrossRefPubMedGoogle Scholar
  12. Duncan S, Louis P, Flint HJ (2004) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70:5810–5817CrossRefPubMedGoogle Scholar
  13. Dy M, Schneider E (2004) Histamine–cytokine connection in immunity and hematopoiesis. Cytokine Growth Factor Rev 15:393–410CrossRefPubMedGoogle Scholar
  14. Eklou-Lawson M, Bernard F, Neveux N, Chaumontet C, Bos C, Davila-Gay AM, Tome D, Cynober L, Blachier F (2009) Colonic luminal ammonia and portal blood l-glutamine and l-arginine concentrations: a possible link between colon mucosa and liver ureagenesis. Amino Acids 37:751–760CrossRefPubMedGoogle Scholar
  15. Elango R, Ball RO, Pencharz PB (2009) Amino acid requirements in humans: with a special emphasis on the metabolic availability of amino acids. Amino Acids 37:19–27CrossRefPubMedGoogle Scholar
  16. Favier CF, Vaughan EE, De Vos WM, Akkermans AD (2002) Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 68:219–226CrossRefPubMedGoogle Scholar
  17. Flint HJ, Duncan S, Scott KP, Louis P (2007) Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol 9:1101–1111CrossRefPubMedGoogle Scholar
  18. Fuller MF, Reeds PJ (1998) Nitrogen cycling in the gut. Annu Rev Nutr 18:385–411CrossRefPubMedGoogle Scholar
  19. Haynes TE, Li P, Li XL, Shimotori K, Sato H, Flynn NE, Wang JJ, Knabe DA, Wu G (2009) l-Glutamine or l-alanyl- l-glutamine prevents oxidant- or endotoxin- induced death of neonatal enterocytes. Amino Acids 37:131–142CrossRefPubMedGoogle Scholar
  20. He QH, Kong XF, Wu G, Ren PP, Tang HR, Hao FH, Huang RL, Li TJ, Tan BE, Li P, Tang ZR, Yin YL, Wu YN (2009) Metabolomic analysis of the response of growing pigs to dietary l-arginine supplementation. Amino Acids 37:199–208CrossRefPubMedGoogle Scholar
  21. Kong XF, Yin YL, He QH, Yin FG, Liu HJ, Li TJ, Huang RL, Geng MM, Ruan Z, Deng ZY, Xie MY, Wu G (2009) Dietary supplementation with Chinese herbal powder enhances ileal digestibilities and serum concentrations of amino acids in young pigs. Amino Acids 37:573–582CrossRefPubMedGoogle Scholar
  22. Konstantinov SR, Zhu WY, Williams BA, Tamminga S, de Vos WM, Akkermans ADL (2003) Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. FEMS Microbiol Ecol 43:225–235CrossRefPubMedGoogle Scholar
  23. Konstantinov SR, Awati AA, Williams BA, Miller BG, Jones P, Stokes CR, Akkermans ADL, Smidt H, de Vos WM (2006) Post-natal development of the porcine microbiota composition and activities. Environ Microbiol 8:1191–1199CrossRefPubMedGoogle Scholar
  24. Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Møller K (2002) Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68:673–690CrossRefPubMedGoogle Scholar
  25. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848CrossRefPubMedGoogle Scholar
  26. Li P, Yin YL, Li D, Kim SW, Wu G (2007) Amino acids and immune function. Br J Nutr 2007(98):237–252CrossRefGoogle Scholar
  27. Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, Zhang Y, Shen J, Pang X, Zhang M, Wei H, Chen Y, Lu H, Zuo J, Su M, Qiu Y, Jia W, Xiao C, Smith LM, Yang S, Holmes E, Tang H, Zhao G, Nicholson JK, Li L, Zhao L (2008) Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA 105:2117–2122CrossRefPubMedGoogle Scholar
  28. Li P, Kim SW, Li XL, Datta S, Pond WG, Wu G (2009a) Dietary supplementation with cholesterol and docosahexaenoic acid affects concentrations of amino acids in tissues of young pigs. Amino Acids 37:709–716CrossRefPubMedGoogle Scholar
  29. Li XL, Bazer FW, Gao H, Jobgen W, Johnson GA, Li P, McKnight JR, Satterfield MC, Spencer TE, Wu G (2009b) Amino acids and gaseous signaling. Amino Acids 37:65–78CrossRefPubMedGoogle Scholar
  30. Lin JR, Armstead IP (1995) The in vitro uptake and metabolism of peptides and amino acids by five species of rumen bacteria. J Appl Bacteriol 78:116–124Google Scholar
  31. MacRae JC, Bruce LA, Brown DS, Calder AG (1997) Amino acid use by the gastrointestinal tract of sheep given lucerne forage. Am J Physiol Gastrointest Liver Physiol 273:1200–1207Google Scholar
  32. Martin F-PJ, Wang Y, Sprenger N, Yap IKS, Lundstedt T, Lek P, Rezzi S, Ramadan Z, Bladeren PV, Fay LB, Kochhar S, Lindon JC, Holmes E, Nicholson JK (2008) Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model. Mol Syst Biol 4:157PubMedGoogle Scholar
  33. Martin F-PJ, Sprenger N, Yap IKS, Wang Y, Bibiloni R, Rochat F, Rezzi S, Cherbut C, Kochhar S, Lindon JC, Holmes E, Nicholson JK (2009) Panorganismal gut microbiome-host metabolic crosstalk. J Proteome Res 8:2090–2105CrossRefPubMedGoogle Scholar
  34. Metges CC (2000) Contribution of microbial amino acids to amino acid homeostasis of the host. J Nutr 130:1857S–1864SPubMedGoogle Scholar
  35. Metges CC, El-Khoury AE, Henneman L, Petzke KJ, Grant I, Bedri S, Pereira PP, Ajami AM, Fuller MF, Young VR (1999) Availability of intestinal microbial lysine for whole body lysine homeostasis in human subjects. Am J Physiol 277:E597–E607PubMedGoogle Scholar
  36. Mikkelsen LL, Højberg O, Jensen BB (2007) Coarse structured feed stimulates members of the genera Lactobacillus and Mitsuokella as well as propionate and butyrate producers in the pig stomach. Livest Sci 109:153–156CrossRefGoogle Scholar
  37. Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNA in Paenibacillus polymixa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643PubMedGoogle Scholar
  38. Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122CrossRefGoogle Scholar
  39. Rogosa M (1969) Acidaminococcus gen. n., Acidaminococcus fermentans sp. n., anaerobic gram-negative diplococci using amino acids as the sole energy source for growth. J Bacteriol 98:756–766PubMedGoogle Scholar
  40. Ros M, Goberna M, Pascual PA, Klammer S, Insam H (2008) 16S rDNA analysis reveals low microbial diversity in community level physiological profile assays. J Microbiol Methods 72:221–226CrossRefPubMedGoogle Scholar
  41. Russell JB, Rychlik JL (2001) Factors that alter rumen microbial ecology. Science 292:1119–1122CrossRefPubMedGoogle Scholar
  42. Rychlik JL, LaVera R, Russell JB (2002) Amino acid deamination by ruminal Megasphaera elsdenii strains. Curr Microbiol 45:340–345CrossRefPubMedGoogle Scholar
  43. Sanguinetti CJ, Dias Neto E, Simpson AJG (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. BioTechniques 17:915–919Google Scholar
  44. Schaible UE, Kaufmann SHE (2005) A nutritive view on the host–pathogen interplay. Trends Microbiol 13:373–380CrossRefPubMedGoogle Scholar
  45. Scheifinger C, Russell N, Chalupa W (1976) Degradation of amino acids by pure cultures of rumen bacteria. J Anim Sci 43:821–827PubMedGoogle Scholar
  46. Smith EA, Macfarlane GT (1996) Studies on amine production in the human colon: enumeration of amine-forming bacteria and physiological effects of carbohydrate and pH. Anaerobe 2:285–297CrossRefGoogle Scholar
  47. Smith EA, Macfarlane GT (1997) Dissimilatory amino acid metabolism in human colonic bacteria. Anaerobe 3:327–337CrossRefPubMedGoogle Scholar
  48. Smith EA, Macfarlane GT (1998) Enumeration of amino acid fermenting bacteria in the human large intestine: effects of pH and starch on peptide metabolism and dissimilation of amino acids. FEMS Microbiol Ecol 25:355–368CrossRefGoogle Scholar
  49. Stoll B, Burrin DG (2006) Measuring splanchnic amino acid metabolism in vivo using stable isotopic tracers. J Anim Sci 84:E60–E72PubMedGoogle Scholar
  50. Stoll B, Henry J, Reeds PJ, Yu H, Jahoor F, Burrin DG (1998) Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J Nutr 128:606–614PubMedGoogle Scholar
  51. Tan B, Yin Y, Liu Z, Li X, Xu H, Kong X, Huang R, Tang W, Shinzato I, Smith SB, Wu G (2009a) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37:169–175CrossRefPubMedGoogle Scholar
  52. Tan B, Li XG, Kong XF, Huang RL, Ruan Z, Yao K, Deng ZY, Xie MY, Shinzato I, Yin YL, Wu G (2009b) Dietary l-arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids 37:323–331CrossRefPubMedGoogle Scholar
  53. Tan BE, Yin YL, Kong XF, Li P, Li XL, Gao HJ, Li XG, Huang RL, Wu G (2009c) l-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids. doi: 10.1007/s00726-009-0334-8
  54. Torrallardona D, Harris CI, Fuller MF (2003a) Pigs’ gastrointestinal microflora provide them with essential amino acids. J Nutr 133:1127–1131PubMedGoogle Scholar
  55. Torrallardona D, Harris CI, Fuller MF (2003b) Lysine synthesized by the gastrointestinal microflora of pigs is absorbed, mostly in the small intestine. Am J Physiol Endocrinol Metab 284:E1177–E1180PubMedGoogle Scholar
  56. Tsukahara T, Koyama H, Okada M, Ushida K (2002) Stimulation of butyrate production by gluconic acid in batch culture of pig cecal digesta and identification of butyrate-producing bacteria. J Nutr 132:2229–2234PubMedGoogle Scholar
  57. van der Schoor SRD, Reeds PJ, Stoll B, Henry JF, Rosenberg JR, Burrin DG, van Goudoever JB (2002) The high metabolic cost of a functional gut. Gastroenterology 123:1931–1940CrossRefGoogle Scholar
  58. van Goudoever JB, Stoll B, Henry JF, Burrin DG, Reeds PJ (2000) Adaptive regulation of intestinal lysine metabolism. Proc Natl Acad Sci USA 97:11620–11625CrossRefPubMedGoogle Scholar
  59. Wallace RJ (1986) Catabolism of amino acids by Megasphaera elsdenii LC1. Appl Environ Microbiol 51:1141–1143PubMedGoogle Scholar
  60. Wallace RJ (1996) Ruminal microbial metabolism of peptides and amino acids. J Nutr 126:1326S–1334SPubMedGoogle Scholar
  61. Wang WW, Qiao SY, Li DF (2009a) Amino acids and gut function. Amino Acids 37:105–110CrossRefPubMedGoogle Scholar
  62. Wang X, Ou D, Yin J, Wu G, Wang J (2009b) Proteomic analysis reveals altered expression of proteins related to glutathione metabolism and apoptosis in the small intestine of zinc oxide-supplemented piglets. Amino Acids 37:209–218CrossRefPubMedGoogle Scholar
  63. Westlake K, Mackie RI (1990) Peptide and amino acid transport in Streptococcus bovis. Appl Microbiol Biotechnol 34:97–102CrossRefPubMedGoogle Scholar
  64. Whitt DD, DeMoss RD (1975) Effect of microflora on the free amino acid distribution in various regions of the mouse gastrointestinal tract. Appl Microbiol 30:609–615PubMedGoogle Scholar
  65. Williams BA, Verstegen MWA, Tamminga S (2001) Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr Res Rev 14:207–227CrossRefPubMedGoogle Scholar
  66. Williams BA, Bosch MW, Boer H, Verstegen MWA, Tamminga S (2005) An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Anim Feed Sci Technol 123–124:445–462CrossRefGoogle Scholar
  67. Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252PubMedGoogle Scholar
  68. Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17CrossRefPubMedGoogle Scholar
  69. Wu G, Borbolla AG, Knabe DA (1994) The uptake of glutamine and release of arginine, citrulline and proline by the small intestine of developing pigs. J Nutr 124:2437–2444PubMedGoogle Scholar
  70. Wu G, Ott TL, Knabe DA, Bazer FW (1999) Amino acid composition of the fetal pig. J Nutr 129:1031–1038PubMedGoogle Scholar
  71. Wu G, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, Satterfield MC, Smith SB, Spencer TE, Yin YL (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168CrossRefPubMedGoogle Scholar
  72. Yin FG, Liu YL, Yin YL, Kong XF, Huang RL, Li TJ, Wu GY, Hou YQ (2009) Dietary supplementation with Astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets. Amino Acids 37:263–270CrossRefPubMedGoogle Scholar
  73. Zhang J (2009) Isolation and identification of amino acid utilizing bacteria from the porcine small intestine. Thesis, Nanjing Agricultural University, Nanjing, ChinaGoogle Scholar
  74. Zoetendal EG, Heilig HGHJ, Klaassens ES, Booijink CCGM, Kleerebezem M, Smidt H, de Vos WM (2006) Isolation of DNA from bacterial samples of the human gastrointestinal tract. Nat Protoc 1:870–873CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Zhao-Lai Dai
    • 1
  • Jing Zhang
    • 1
  • Guoyao Wu
    • 2
  • Wei-Yun Zhu
    • 1
  1. 1.Laboratory of Gastrointestinal MicrobiologyNanjing Agricultural UniversityNanjingChina
  2. 2.Department of Animal ScienceTexas A&M UniversityCollege StationUSA

Personalised recommendations