Amino Acids

, Volume 39, Issue 5, pp 1183–1191

Gluten T cell epitope targeting by TG3 and TG6; implications for dermatitis herpetiformis and gluten ataxia

  • Jorunn Stamnaes
  • Siri Dorum
  • Burkhard Fleckenstein
  • Daniel Aeschlimann
  • Ludvig M. Sollid
Original Article

Abstract

Transglutaminase 2 (TG2) is well characterized as the main autoantigen of celiac disease. The ability of TG2 to deamidate and crosslink gluten peptides is essential for the gluten-dependent production of TG2 specific autoantibodies. In patients with primarily extraintestinal manifestation of gluten sensitivity the repertoire of autoantibodies may be different. In dermatitis herpetiformis (DH), TG3 appears to be the target autoantigen whereas in gluten ataxia (GA) autoantibodies reactive with TG6 are present. A functional role for TG3 and TG6 in these diseases has yet to be described. It is also not known whether these enzymes can use gluten peptides implicated in the pathology as substrates. We here report that similar to TG2, TG3 and TG6 can specifically deamidate gluten T cell epitopes. However, the fine specificities of the enzymes were found to differ. TG2 can form covalent complexes with gluten by iso-peptide and thioester bonds. We found that both TG3 and TG6 were able to complex with gluten peptides through thioester linkage although less efficiently than TG2, whereas TG6 but not TG3 was able to form iso-peptide linked complexes. Our findings lend credence to the notion that TG3 and TG6 are involved in the gluten-induced autoimmune responses of DH and GA.

Keywords

Gluten Autoantibodies TG3 TG6 Dermatitis herpetiformis Gluten ataxia 

Abbreviations

CD

Celiac disease

DH

Dermatitis herpetiformis

GA

Gluten ataxia

TGase

Transglutaminase

TG2

Transglutaminase 2

TG3

Transglutaminase 3

TG6

Transglutaminase 6

References

  1. Aeschlimann D, Thomazy V (2000) Protein crosslinking in assembly and remodelling of extracellular matrices: the role of transglutaminases. Connect Tissue Res 41(1):1–27CrossRefPubMedGoogle Scholar
  2. Arentz-Hansen H, Korner R et al (2000) The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J Exp Med 191(4):603–612CrossRefPubMedGoogle Scholar
  3. Arentz-Hansen H, McAdam SN et al (2002) Celiac lesion T cells recognize epitopes that cluster in regions of gliadins rich in proline residues. Gastroenterology 123(3):803–809CrossRefPubMedGoogle Scholar
  4. Boros S, Ahrman E et al (2006) Site-specific transamidation and deamidation of the small heat-shock protein Hsp20 by tissue transglutaminase. Proteins 62(4):1044–1052CrossRefPubMedGoogle Scholar
  5. Buus S, Stryhn A et al (1995) Receptor-ligand interactions measured by an improved spun column chromatography technique. A high efficiency and high throughput size separation method. Biochim Biophys Acta 1243(3):453–460PubMedGoogle Scholar
  6. Candi E, Melino G et al (1995) Biochemical, structural, and transglutaminase substrate properties of human loricrin, the major epidermal cornified cell envelope protein. J Biol Chem 270(44):26382–26390CrossRefPubMedGoogle Scholar
  7. de Ritis G, Auricchio S et al (1988) In vitro (organ culture) studies of the toxicity of specific A-gliadin peptides in celiac disease. Gastroenterology 94(1):41–49PubMedGoogle Scholar
  8. Dieterich W, Ehnis T et al (1997) Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 3(7):797–801CrossRefPubMedGoogle Scholar
  9. Dieterich W, Laag E et al (1998) Autoantibodies to tissue transglutaminase as predictors of celiac disease. Gastroenterology 115(6):1317–1321CrossRefPubMedGoogle Scholar
  10. Dieterich W, Esslinger B et al (2006) Cross linking to tissue transglutaminase and collagen favours gliadin toxicity in coeliac disease. Gut 55(4):478–484CrossRefPubMedGoogle Scholar
  11. Dorum S, Qiao SW et al (2009) A quantitative analysis of transglutaminase 2-mediated deamidation of gluten peptides: implications for the T-cell response in celiac disease. J Proteome Res 8(4):1748–1755CrossRefPubMedGoogle Scholar
  12. Fasano A, Catassi C (2001) Current approaches to diagnosis and treatment of celiac disease: an evolving spectrum. Gastroenterology 120(3):636–651CrossRefPubMedGoogle Scholar
  13. Fleckenstein B, Molberg O et al (2002) Gliadin T cell epitope selection by tissue transglutaminase in celiac disease. Role of enzyme specificity and pH influence on the transamidation versus deamidation process. J Biol Chem 277(37):34109–34116CrossRefPubMedGoogle Scholar
  14. Fleckenstein B, Qiao SW et al (2004) Molecular characterization of covalent complexes between tissue transglutaminase and gliadin peptides. J Biol Chem 279(17):17607–17616CrossRefPubMedGoogle Scholar
  15. Folk JE (1983) Mechanism and basis for specificity of transglutaminase-catalyzed epsilon-(gamma-glutamyl) lysine bond formation. Adv Enzymol Relat Areas Mol Biol 54:1–56PubMedGoogle Scholar
  16. Fry L (1995) Dermatitis herpetiformis. Baillieres Clin Gastroenterol 9(2):371–393CrossRefPubMedGoogle Scholar
  17. Greenwood FC, Hunter WM et al (1963) The preparation of I-131-labelled human growth hormone of high specific radioactivity. Biochem J 89:114–123PubMedGoogle Scholar
  18. Grenard P, Bates MK et al (2001) Evolution of transglutaminase genes: identification of a transglutaminase gene cluster on human chromosome 15q15. Structure of the gene encoding transglutaminase X and a novel gene family member, transglutaminase Z. J Biol Chem 276(35):33066–33078CrossRefPubMedGoogle Scholar
  19. Hadjivassiliou M, Grunewald RA et al (1998) Clinical, radiological, neurophysiological, and neuropathological characteristics of gluten ataxia. Lancet 352(9140):1582–1585CrossRefPubMedGoogle Scholar
  20. Hadjivassiliou M, Maki M et al (2006) Autoantibody targeting of brain and intestinal transglutaminase in gluten ataxia. Neurology 66(3):373–377CrossRefPubMedGoogle Scholar
  21. Hadjivassiliou M, Aeschlimann P et al (2008) Autoantibodies in gluten ataxia recognize a novel neuronal transglutaminase. Ann Neurol 64(3):332–343CrossRefPubMedGoogle Scholar
  22. Hadjivassiliou M, Sanders DS et al (2010) Gluten sensitivity: from gut to brain. Lancet Neurol 9(3):318–330CrossRefPubMedGoogle Scholar
  23. Hitomi K, Horio Y et al (2001) Analysis of epidermal-type transglutaminase (TGase 3) expression in mouse tissues and cell lines. Int J Biochem Cell Biol 33(5):491–498CrossRefPubMedGoogle Scholar
  24. Jeitner TM, Bogdanov MB et al (2001) N(epsilon)-(gamma-L-glutamyl)-L-lysine (GGEL) is increased in cerebrospinal fluid of patients with Huntington’s disease. J Neurochem 79(5):1109–1112CrossRefPubMedGoogle Scholar
  25. Keresztessy Z, Csosz E et al (2006) Phage display selection of efficient glutamine-donor substrate peptides for transglutaminase 2. Protein Sci 15(11):2466–2480CrossRefPubMedGoogle Scholar
  26. Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4(2):140–156CrossRefPubMedGoogle Scholar
  27. Molberg O, McAdam SN et al (1998) Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 4(6):713–717CrossRefPubMedGoogle Scholar
  28. Nemes Z, Fesus L et al (2001) N(epsilon)(gamma-glutamyl)lysine in cerebrospinal fluid marks Alzheimer type and vascular dementia. Neurobiol Aging 22(3):403–406CrossRefPubMedGoogle Scholar
  29. Piper JL, Gray GM et al (2002) High selectivity of human tissue transglutaminase for immunoactive gliadin peptides: implications for celiac sprue. Biochemistry 41(1):386–393CrossRefPubMedGoogle Scholar
  30. Qiao SW, Bergseng E et al (2005) Refining the rules of gliadin T cell epitope binding to the disease-associated DQ2 molecule in celiac disease: importance of proline spacing and glutamine deamidation. J Immunol 175(1):254–261PubMedGoogle Scholar
  31. Sardy M, Karpati S et al (2002) Epidermal transglutaminase (TGase 3) is the autoantigen of dermatitis herpetiformis. J Exp Med 195(6):747–757CrossRefPubMedGoogle Scholar
  32. Shan L, Molberg O et al (2002) Structural basis for gluten intolerance in celiac sprue. Science 297(5590):2275–2279CrossRefPubMedGoogle Scholar
  33. Shan L, Qiao SW et al (2005) Identification and analysis of multivalent proteolytically resistant peptides from gluten: implications for celiac sprue. J Proteome Res 4(5):1732–1741CrossRefPubMedGoogle Scholar
  34. Sollid LM (2002) Coeliac disease: dissecting a complex inflammatory disorder. Nat Rev Immunol 2(9):647–655CrossRefPubMedGoogle Scholar
  35. Sollid LM, Molberg O et al (1997) Autoantibodies in coeliac disease: tissue transglutaminase—guilt by association? Gut 41(6):851–852CrossRefPubMedGoogle Scholar
  36. Stamnaes J, Fleckenstein B et al (2008) The propensity for deamidation and transamidation of peptides by transglutaminase 2 is dependent on substrate affinity and reaction conditions. Biochim Biophys Acta 1784(11):1804–1811PubMedGoogle Scholar
  37. Sugimura Y, Hosono M et al (2006) Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: identification of peptide substrates for TGASE 2 and Factor XIIIA. J Biol Chem 281(26):17699–17706CrossRefPubMedGoogle Scholar
  38. Sulkanen S, Halttunen T et al (1998) Tissue transglutaminase autoantibody enzyme-linked immunosorbent assay in detecting celiac disease. Gastroenterology 115(6):1322–1328CrossRefPubMedGoogle Scholar
  39. Szondy Z, Sarang Z et al (2003) Transglutaminase 2−/− mice reveal a phagocytosis-associated crosstalk between macrophages and apoptotic cells. Proc Natl Acad Sci USA 100(13):7812–7817CrossRefPubMedGoogle Scholar
  40. Towler DA, Gordon JI et al (1988) The biology and enzymology of eukaryotic protein acylation. Annu Rev Biochem 57:69–99CrossRefPubMedGoogle Scholar
  41. Vader LW, de Ru A et al (2002a) Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. J Exp Med 195(5):643–649CrossRefPubMedGoogle Scholar
  42. Vader W, Kooy Y et al (2002b) The gluten response in children with celiac disease is directed toward multiple gliadin and glutenin peptides. Gastroenterology 122(7):1729–1737CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jorunn Stamnaes
    • 1
    • 4
  • Siri Dorum
    • 1
  • Burkhard Fleckenstein
    • 1
  • Daniel Aeschlimann
    • 2
  • Ludvig M. Sollid
    • 1
    • 3
  1. 1.Centre for Immune Regulation, Institute of ImmunologyUniversity of Oslo, RikshospitaletOsloNorway
  2. 2.Matrix Biology and Tissue Repair Unit, School of DentistryCardiff UniversityCardiffUK
  3. 3.Centre for Immune Regulation, Institute of ImmunologyOslo University Hospital, RikshospitaletOsloNorway
  4. 4.Institute of ImmunologyRikshospitaletOsloNorway

Personalised recommendations