Amino Acids

, Volume 41, Issue 5, pp 1081–1092 | Cite as

Peptide heterodimers for molecular imaging

  • Yongjun Yan
  • Xiaoyuan ChenEmail author
Review Article


One main issue with peptide-based molecular imaging probes is their relatively low tumor affinity and short retention time. To improve peptide binding affinity, multivalency approach has been introduced. Traditionally, this approach involves the use of peptide homodimers or homomultimers in which peptide ligands of the same type are constructed with suitable linkers. Recently, a new approach using peptide heterodimers has emerged as a promising method for targeting multi-receptor over-expressed tumor cells. Significant affinity enhancements have been observed with peptide heterodimers compared with their parent peptide monomers. In a peptide heterodimer, two different peptide ligands capable of targeting two different receptors are covalently linked. The binding modes of peptide heterodimers can be monovalent or bivalent depending on whether simultaneous binding of two ligands can be achieved. Increased local ligand concentration and improved binding kinetics contribute to enhanced binding in both monovalent- and bivalent binding modes, while multivalency effect also plays an important role in bivalent binding mode. As many tumors overexpress multiple receptors, more peptide heterodimer-based molecular imaging probes are expected to be developed in future. This review article will discuss the peptide homodimers and heterodimers for molecular imaging with special emphasis on peptide heterodimers.


Peptide Heterodimer Molecular imaging 


  1. Aloj L, Morelli G (2004) Design, synthesis and preclinical evaluation of radiolabeled peptides for diagnosis and therapy. Curr Pharm Des 10:3009–3031PubMedCrossRefGoogle Scholar
  2. Benedetti E, Morelli G, Accardo A, Mansi R, Tesauro D, Aloj L (2004) Criteria for the design and biological characterization of radiolabeled peptide-based pharmaceuticals. BioDrugs 18:279–295PubMedCrossRefGoogle Scholar
  3. Handl HL, Vagner J, Han H, Mash E, Hruby VJ, Gillies RJ (2004) Hitting multiple targets with multimeric ligands. Expert Opin Ther Targets 8:565–586PubMedCrossRefGoogle Scholar
  4. Josan JS, Vagner J, Handl HL, Sankaranarayanan R, Gillies RJ, Hruby VJ (2008) Solid-phase synthesis of heterobivalent ligands targeted to melanocortin and cholecystokinin receptors. Int J Pept Res Ther 14:293–300PubMedCrossRefGoogle Scholar
  5. Kwekkeboom D, Krenning EP, de Jong M (2000) Peptide receptor imaging and therapy. J Nucl Med 41:1704–1713PubMedGoogle Scholar
  6. Li ZB, Cai W, Cao Q et al (2007) (64)Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor alpha(v)beta(3) integrin expression. J Nucl Med 48:1162–1171PubMedCrossRefGoogle Scholar
  7. Li ZB, Chen K, Chen X (2008a) (68)Ga-labeled multimeric RGD peptides for microPET imaging of integrin alpha(v)beta (3) expression. Eur J Nucl Med Mol Imaging 35:1100–1108PubMedCrossRefGoogle Scholar
  8. Li ZB, Wu Z, Chen K, Ryu EK, Chen X (2008b) 18F-labeled BBN-RGD heterodimer for prostate cancer imaging. J Nucl Med 49:453–461PubMedCrossRefGoogle Scholar
  9. Liu S (2006) Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor imaging. Mol Pharm 3:472–487PubMedCrossRefGoogle Scholar
  10. Liu S, Edwards DS, Ziegler MC, Harris AR, Hemingway SJ, Barrett JA (2001) 99mTc-labeling of a hydrazinonicotinamide-conjugated vitronectin receptor antagonist useful for imaging tumors. Bioconjug Chem 12:624–629PubMedCrossRefGoogle Scholar
  11. Liu Z, Liu S, Wang F, Chen X (2009a) Noninvasive imaging of tumor integrin expression using (18)F-labeled RGD dimer peptide with PEG (4) linkers. Eur J Nucl Med Mol Imaging 36:1296–1307PubMedCrossRefGoogle Scholar
  12. Liu Z, Niu G, Shi J, Liu S, Wang F, Chen X (2009b) (68)Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers: promising agents for tumor integrin alphavbeta3 PET imaging. Eur J Nucl Med Mol Imaging 36:947–957PubMedCrossRefGoogle Scholar
  13. Liu Z, Yan Y, Chin FT, Wang F, Chen X (2009c) Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN. J Med Chem 52:425–432PubMedCrossRefGoogle Scholar
  14. Liu Z, Li ZB, Cao Q, Liu S, Wang F, Chen X (2009d) Small-animal PET of tumors with (64)Cu-labeled RGD-bombesin heterodimer. J Nucl Med 50:1168–1177PubMedCrossRefGoogle Scholar
  15. Liu Z, Niu G, Wang F, Chen X (2009e) (68)Ga-labeled NOTA-RGD-BBN peptide for dual integrin and GRPR-targeted tumor imaging. Eur J Nucl Med Mol Imaging 36:1483–1494PubMedCrossRefGoogle Scholar
  16. Liu Z, Yan Y, Liu S, Wang F, Chen X (2009f) 18F, 64Cu, and 68 Ga labeled RGD-bombesin heterodimeric peptides for PET imaging of breast cancer. Bioconjug Chem 20:1016–1025PubMedCrossRefGoogle Scholar
  17. Mammen M, Choi S-K, Whitesides G (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem 37:2755–2794Google Scholar
  18. Pillai R, Marinelli ER, Swenson RE (2006) A flexible method for preparation of peptide homo- and heterodimers functionalized with affinity probes, chelating ligands, and latent conjugating groups. Biopolymers 84:576–585PubMedCrossRefGoogle Scholar
  19. Reubi JC, Waser B (2003) Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging 30:781–793PubMedCrossRefGoogle Scholar
  20. Sharma SD, Jiang J, Hadley ME, Bentley DL, Hruby VJ (1996) Melanotropic peptide-conjugated beads for microscopic visualization and characterization of melanoma melanotropin receptors. Proc Natl Acad Sci USA 93:13715–13720PubMedCrossRefGoogle Scholar
  21. Shrivastava A, von Wronski MA, Sato AK et al (2005) A distinct strategy to generate high-affinity peptide binders to receptor tyrosine kinases. Protein Eng Des Sel 18:417–424PubMedCrossRefGoogle Scholar
  22. Shrivastava A, Nunn AD, Tweedle MF (2009) Designer peptides: learning from nature. Curr Pharm Des 15:675–681PubMedCrossRefGoogle Scholar
  23. Tweedle MF (2006) Adventures in multivalency, the Harry S. Fischer memorial lecture CMR 2005; Evian, France. Contrast Media Mol Imaging 1:2–9PubMedCrossRefGoogle Scholar
  24. Tweedle MF (2009) Peptide-targeted diagnostics and radiotherapeutics. Acc Chem Res 42:958–968PubMedCrossRefGoogle Scholar
  25. Vadas O, Rose K (2007) Multivalency—a way to enhance binding avidities and bioactivity—preliminary applications to EPO. J Pept Sci 13:581–587PubMedCrossRefGoogle Scholar
  26. Vagner J, Xu L, Handl HL et al (2008) Heterobivalent ligands crosslink multiple cell-surface receptors: the human melanocortin-4 and delta-opioid receptors. Angew Chem Int Ed Engl 47:1685–1688PubMedCrossRefGoogle Scholar
  27. Wu Y, Zhang X, Xiong Z et al (2005) microPET imaging of glioma integrin {alpha}v{beta}3 expression using (64)Cu-labeled tetrameric RGD peptide. J Nucl Med 46:1707–1718PubMedGoogle Scholar
  28. Wu Z, Li ZB, Chen K et al (2007) microPET of tumor integrin alphavbeta3 expression using 18F-labeled PEGylated tetrameric RGD peptide (18F-FPRGD4). J Nucl Med 48:1536–1544PubMedCrossRefGoogle Scholar
  29. Xu L, Vagner J, Josan J et al (2009) Enhanced targeting with heterobivalent ligands. Mol Cancer Ther 8:2356–2365PubMedCrossRefGoogle Scholar
  30. Ye Y, Bloch S, Xu B, Achilefu S (2006) Design, synthesis, and evaluation of near infrared fluorescent multimeric RGD peptides for targeting tumors. J Med Chem 49:2268–2275PubMedCrossRefGoogle Scholar
  31. Zaccaro L, Del Gatto A, Pedone C, Saviano M (2009) Peptides for tumour therapy and diagnosis: current status and future directions. Curr Med Chem 16:780–795PubMedCrossRefGoogle Scholar
  32. Zhang X, Xiong Z, Wu Y et al (2006) Quantitative PET imaging of tumor integrin alphavbeta3 expression with 18F-FRGD2. J Nucl Med 47:113–121PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Laboratory of Molecular Imaging and Nanomedicine (LOMIN)National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH)BethesdaUSA

Personalised recommendations