Amino Acids

, Volume 39, Issue 4, pp 949–962 | Cite as

Proline metabolism and transport in plant development

  • Silke Lehmann
  • Dietmar Funck
  • László Szabados
  • Doris Rentsch
Review Article


Proline fulfils diverse functions in plants. As amino acid it is a structural component of proteins, but it also plays a role as compatible solute under environmental stress conditions. Proline metabolism involves several subcellular compartments and contributes to the redox balance of the cell. Proline synthesis has been associated with tissues undergoing rapid cell divisions, such as shoot apical meristems, and appears to be involved in floral transition and embryo development. High levels of proline can be found in pollen and seeds, where it serves as compatible solute, protecting cellular structures during dehydration. The proline concentrations of cells, tissues and plant organs are regulated by the interplay of biosynthesis, degradation and intra- as well as intercellular transport processes. Among the proline transport proteins characterized so far, both general amino acid permeases and selective compatible solute transporters were identified, reflecting the versatile role of proline under stress and non-stress situations. The review summarizes our current knowledge on proline metabolism and transport in view of plant development, discussing regulatory aspects such as the influence of metabolites and hormones. Additional information from animals, fungi and bacteria is included, showing similarities and differences to proline metabolism and transport in plants.


Proline Plant Metabolism Transport Regulation Development 



We are grateful to the Swiss National Foundation (Grant no. 3100A0-107507), the University of Bern (Switzerland), the University of Konstanz (Germany) and Hungarian Scientific Research Fund (Grant no. K-68226).


  1. Ábrahám E, Rigó G, Székely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372PubMedCrossRefGoogle Scholar
  2. Amberger-Ochsenbauer S, Obendorfer J (1988) Levels of free proline in ornamental plants: I. Influence of plant age, leaf age, and leaf region in Saintpaulia and Chrysanthemum. J Plant Physiol 132:758–761Google Scholar
  3. Andréasson C, Neve EPA, Ljungdahl PO (2004) Four permeases import proline and the toxic proline analogue azetidine-2-carboxylate into yeast. Yeast 21:193–199PubMedCrossRefGoogle Scholar
  4. Aral B, Kamoun P (1997) The proline biosynthesis in living organisms. Amino Acids 13:189–217CrossRefGoogle Scholar
  5. Aral B, Schlenzig JS, Liu G, Kamoun P (1996) Database cloning human Δ1-pyrroline-5-carboxylate synthetase (P5CS) cDNA: a bifunctional enzyme catalyzing the first two steps in proline biosynthesis. C R Acad Sci III 319:171–178PubMedGoogle Scholar
  6. Armengaud P, Thiery L, Buhot N, Grenier-de March G, Savouré A (2004) Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol Plant 120:442–450PubMedCrossRefGoogle Scholar
  7. Atlante A, Passarella S, Pierro P, Martino C, Quagliariello E (1996) The mechanism of proline/glutamate antiport in rat kidney mitochondria. Eur J Biochem 241:171–177PubMedCrossRefGoogle Scholar
  8. Ayliffe MA, Mitchell HJ, Deuschle K, Pryor AJ (2005) Comparative analysis in cereals of a key proline catabolism gene. Mol Genet Genomics 274:494–505PubMedCrossRefGoogle Scholar
  9. Baumgartner MR, Rabier D, Nassogne MC, Dufier JL, Padovani JP, Kamoun P, Valle D, Saudubray JM (2005) Δ1-Pyrroline-5-carboxylate synthase deficiency: neurodegeneration, cataracts and connective tissue manifestations combined with hyperammonaemia and reduced ornithine, citrulline, arginine and proline. Eur J Pediatr 164:31–36PubMedCrossRefGoogle Scholar
  10. Bialczyk J, Lechowski Z, Dziga D (2004) Composition of the xylem sap of tomato seedlings cultivated on media with HCO3 and nitrogen source as NO3 or NH4 +. Plant Soil 263:265–272CrossRefGoogle Scholar
  11. Bicknell LS, Pitt J, Aftimos S, Ramadas R, Maw MA, Robertson SP (2008) A missense mutation in ALDH18A1, encoding Δ1-pyrroline-5-carboxylate synthase (P5CS), causes an autosomal recessive neurocutaneous syndrome. Eur J Hum Genet 16:1176–1186PubMedCrossRefGoogle Scholar
  12. Bock KW, Honys D, Ward JM, Padmanaban S, Nawrocki EP, Hirschi KD, Twell D, Sze H (2006) Integrating membrane transport with male gametophyte development and function through transcriptomics. Plant Physiol 140:1151–1168PubMedCrossRefGoogle Scholar
  13. Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111PubMedCrossRefGoogle Scholar
  14. Bonner CA, Williams DS, Aldrich HC, Jensen RA (1996) Antagonism by l-glutamine of toxicity and growth inhibition caused by other amino acids in suspension cultures of Nicotiana silvestris. Plant Sci 113:43–58CrossRefGoogle Scholar
  15. Boorer KJ, Frommer WB, Bush DR, Kreman M, Loo DDF, Wright EM (1996) Kinetics and specificity of a H+/amino acid transporter from Arabidopsis thaliana. J Biol Chem 271:2213–2220PubMedCrossRefGoogle Scholar
  16. Breitkreuz KE, Shelp BJ, Fischer WN, Schwacke R, Rentsch D (1999) Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana. FEBS Lett 450:280–284PubMedCrossRefGoogle Scholar
  17. Brugière N, Dubois F, Limami AM, Lelandais M, Roux Y, Sangwan RS, Hirel B (1999) Glutamine synthetase in the phloem plays a major role in controlling proline production. Plant Cell 11:1995–2012PubMedCrossRefGoogle Scholar
  18. Carter C, Shafir S, Yehonatan L, Palmer R, Thornburg R (2006) A novel role for proline in plant floral nectars. Naturwissenschaften 93:72–79PubMedCrossRefGoogle Scholar
  19. Chen L, Bush DR (1997) LHT1, a lysine- and histidine-specific amino acid transporter in Arabidopsis. Plant Physiol 115:1127–1134PubMedCrossRefGoogle Scholar
  20. Chen NH, Reith MEA, Quick MW (2004) Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflüg Arch Eur J Physiol 447:519–531CrossRefGoogle Scholar
  21. Chiang H, Dandekar AM (1995) Regulation of proline accumulation in Arabidopsis thaliana (L.) Heynh during development and in response to desiccation. Plant Cell Environ 18:1280–1290CrossRefGoogle Scholar
  22. Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Mol Biol Rev 53:121–147Google Scholar
  23. Csonka LN, Gelvin SB, Goodner BW, Orser CS, Siemieniak D, Slightom JL (1988) Nucleotide sequence of a mutation in the proB gene of Escherichia coli that confers proline overproduction and enhanced tolerance to osmotic stress. Gene 64:199–205PubMedCrossRefGoogle Scholar
  24. Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci 99:16314–16318PubMedCrossRefGoogle Scholar
  25. Deuschle K, Funck D, Hellmann H, Däschner K, Binder S, Frommer WB (2001) A nuclear gene encoding mitochondrial Δ1-pyrroline-5-carboxylate dehydrogenase and its potential role in protection from proline toxicity. Plant J 27:345–355PubMedCrossRefGoogle Scholar
  26. Deuschle K, Funck D, Forlani G, Stransky H, Biehl A, Leister D, van der Graaff E, Kunze R, Frommer WB (2004) The role of ∆1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell 16:3413–3425PubMedCrossRefGoogle Scholar
  27. Di Martino C, Pizzuto R, Pallotta M, De Santis A, Passarella S (2006) Mitochondrial transport in proline catabolism in plants: the existence of two separate translocators in mitochondria isolated from durum wheat seedlings. Planta 223:1123–1133PubMedCrossRefGoogle Scholar
  28. Donald SP, Sun XY, Hu CAA, Yu J, Mei JM, Valle D, Phang JM (2001) Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species. Cancer Res 61:1810–1815PubMedGoogle Scholar
  29. Dougherty KM, Brandriss MC, Valle D (1992) Cloning human pyrroline-5-carboxylate reductase cDNA by complementation in Saccharomyces cerevisiae. J Biol Chem 267:871–875PubMedGoogle Scholar
  30. El-Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–224CrossRefGoogle Scholar
  31. Elthon TE, Stewart CR (1982) Proline oxidation in corn mitochondria: involvement of NAD, relationship to ornithine metabolism, and sidedness on the inner membrane. Plant Physiol 70:567–572PubMedCrossRefGoogle Scholar
  32. Elthon TE, Stewart CR, Bonner WD (1984) Energetics of proline transport in corn mitochondria. Plant Physiol 75:951–955PubMedCrossRefGoogle Scholar
  33. Fabro G, Kovács I, Pavet V, Szabados L, Alvarez ME (2004) Proline accumulation and AtP5CS2 gene activation are induced by plant–pathogen incompatible interactions in Arabidopsis. Mol Plant Microbe Interact 17:343–350PubMedCrossRefGoogle Scholar
  34. Finkelstein R, Gampala S, Rock C (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45PubMedGoogle Scholar
  35. Fischer WN (1997) Substratspezifität und Transportmechanismus pflanzlicher Aminosäuren in Relation zu ihrer physiologischen Funktion. Dissertation, Eberhard-Karls-University Tübingen, GermanyGoogle Scholar
  36. Fischer WN, Kwart M, Hummel S, Frommer WB (1995) Substrate specificity and expression profile of amino acid transporters (AAPs) in Arabidopsis. J Biol Chem 270:16315–16320PubMedCrossRefGoogle Scholar
  37. Fischer WN, Loo DDF, Koch W, Ludewig U, Boorer KJ, Tegeder M, Rentsch D, Wright EM, Frommer WB (2002) Low and high affinity amino acid H+-cotransporters for cellular import of neutral and charged amino acids. Plant J 29:717–731PubMedCrossRefGoogle Scholar
  38. Forlani G, Scainelli D, Nielsen E (1997) Two Δ1-pyrroline-5-carboxylate dehydrogenase isoforms are expressed in cultured Nicotiana plumbaginifolia cells and are differentially modulated during the culture growth cycle. Planta 202:242CrossRefGoogle Scholar
  39. Foster J, Lee YH, Tegeder M (2008) Distinct expression of members of the LHT amino acid transporter family in flowers indicates specific roles in plant reproduction. Sex Plant Reprod 21:143–152CrossRefGoogle Scholar
  40. Frommer WB, Hummel S, Riesmeier JW (1993) Expression cloning in yeast of a cDNA encoding a broad specificity amino acid permease from Arabidopsis thaliana. Proc Natl Acad Sci 90:5944–5948PubMedCrossRefGoogle Scholar
  41. Frommer WB, Hummel S, Unseld M, Ninnemann O (1995) Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis. Proc Natl Acad Sci 92:12036–12040PubMedCrossRefGoogle Scholar
  42. Fujita T, Maggio A, García-Ríos M, Bressan RA, Csonka LN (1998) Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for ∆1-pyrroline-5-carboxylate synthetase from tomato. Plant Physiol 118:661–674PubMedCrossRefGoogle Scholar
  43. Funck D, Stadelhofer B, Koch W (2008) Ornithine-δ-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. BMC Plant Biol 8:40PubMedCrossRefGoogle Scholar
  44. Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8:93–102PubMedCrossRefGoogle Scholar
  45. Ginzberg I, Stein H, Kapulnik Y, Szabados L, Strizhov N, Schell J, Koncz C, Zilberstein A (1998) Isolation and characterization of two different cDNAs of Δ1-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress. Plant Mol Biol 38:755–764PubMedCrossRefGoogle Scholar
  46. Girousse C, Bournoville R, Bonnemain JL (1996) Water deficit-induced changes in concentrations in proline and some other amino acids in the phloem sap of alfalfa. Plant Physiol 111:109–113PubMedGoogle Scholar
  47. Grallath S, Weimar T, Meyer A, Gumy C, Suter-Grotemeyer M, Neuhaus J-M, Rentsch D (2005) The AtProT family. Compatible solute transporters with similar substrate specificity but differential expression patterns. Plant Physiol 137:117–126PubMedCrossRefGoogle Scholar
  48. Grenson M, Hou C, Crabeel M (1970) Multiplicity of the amino acid permeases in Saccharomyces cerevisiae IV. Evidence for a general amino acid permease. J Bacteriol 103:770–777PubMedGoogle Scholar
  49. Hammes UZ, Nielsen E, Honaas LA, Taylor CG, Schachtman DP (2006) AtCAT6, a sink-tissue-localized transporter for essential amino acids in Arabidopsis. Plant J 48:414–426PubMedCrossRefGoogle Scholar
  50. Hanson AD, Tully RE (1979) Amino acids translocated from turgid and water-stressed barley leaves: II. Studies with 13N and 14C. Plant Physiol 64:467–471PubMedCrossRefGoogle Scholar
  51. Hanson J, Hanssen M, Wiese A, Hendriks MMWB, Smeekens S (2008) The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of Asparagine Synthetase1 and Proline Dehydrogenase2. Plant J 53:935–949PubMedCrossRefGoogle Scholar
  52. Hare PD, Cress WA (1996) Tissue-specific accumulation of transcript encoding Δ1-pyrrolline-5-carboxylate reductase in Arabidopsis thaliana. Plant Growth Regul 19:249–256CrossRefGoogle Scholar
  53. Hare PD, Cress W, van Staden J (1999) Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J Exp Bot 50:413–434CrossRefGoogle Scholar
  54. Hare PD, Cress WA, van Staden J (2002) Disruptive effects of exogenous proline on chloroplast and mitochondrial ultrastructure in Arabidopsis leaves. S Afr J Bot 68:393–396Google Scholar
  55. Hare PD, Cress WA, van Staden J (2003) A regulatory role for proline metabolism in stimulating Arabidopsis thaliana seed germination. Plant Growth Regul 39:41–50CrossRefGoogle Scholar
  56. Hayashi F, Ichino T, Osanai M, Wada K (2000) Oscillation and regulation of proline content by P5CS and ProDH gene expressions in the light/dark cycles in Arabidopsis thaliana L. Plant Cell Physiol 41:1096–1101PubMedCrossRefGoogle Scholar
  57. Hellmann H, Funck D, Rentsch D, Frommer WB (2000) Hypersensitivity of an Arabidopsis sugar signaling mutant toward exogenous proline application. Plant Physiol 123:779–789PubMedCrossRefGoogle Scholar
  58. Hien DT, Jacobs M, Angenon G, Hermans C, Thu TT, Son LV, Roosens NH (2003) Proline accumulation and Δ1-pyrroline-5-carboxylate synthetase gene properties in three rice cultivars differing in salinity and drought tolerance. Plant Sci 165:1059–1068CrossRefGoogle Scholar
  59. Hirner B, Fischer WN, Rentsch D, Kwart M, Frommer WB (1998) Developmental control of H+/amino acid permease gene expression during seed development of Arabidopsis. Plant J 14:535–544PubMedCrossRefGoogle Scholar
  60. Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, Frommer WB, Koch W (2006) Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18:1931–1946PubMedCrossRefGoogle Scholar
  61. Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85PubMedCrossRefGoogle Scholar
  62. Horner M, Pratt ML (1979) Amino acid analysis of in vivo and androgenic anthers of Nicotiana tabacum. Protoplasma 98:279–282CrossRefGoogle Scholar
  63. Hu CA, Delauney AJ, Verma DP (1992) A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci 89:9354–9358PubMedCrossRefGoogle Scholar
  64. Hu CA, Lin WW, Obie C, Valle D (1999) Molecular enzymology of mammalian Δ1-pyrroline-5-carboxylate synthase. J Biol Chem 274:6754–6762PubMedCrossRefGoogle Scholar
  65. Hu CA, Khalil S, Zhaorigetu S, Liu Z, Tyler M, Wan G, Valle D (2008a) Human Δ1-pyrroline-5-carboxylate synthase: function and regulation. Amino Acids 35:665–672PubMedCrossRefGoogle Scholar
  66. Hu CA, Bart Williams D, Zhaorigetu S, Khalil S, Wan G, Valle D (2008b) Functional genomics and SNP analysis of human genes encoding proline metabolic enzymes. Amino Acids 35:655–664PubMedCrossRefGoogle Scholar
  67. Hua XJ, van de Cotte B, van Montagu M, Verbruggen N (1997) Developmental regulation of pyrroline-5-carboxylate reductase gene expression in Arabidopsis. Plant Physiol 114:1215–1224PubMedCrossRefGoogle Scholar
  68. Hur J, Jung KH, Lee CH, An G (2004) Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Sci 167:417–426CrossRefGoogle Scholar
  69. Igarashi Y, Yoshiba Y, Takeshita T, Nomura S, Otomo J, Yamaguchi-Shinozaki K, Shinozaki K (2000) Molecular cloning and characterization of a cDNA encoding proline transporter in rice. Plant Cell Physiol 41:750–756PubMedCrossRefGoogle Scholar
  70. Jauniaux JC, Vandenbol M, Vissers S, Broman K, Grenson M (1987) Nitrogen catabolite regulation of proline permease in Saccharomyces cerevisiae. Eur J Biochem 164:601–606PubMedCrossRefGoogle Scholar
  71. Joyce PS, Paleg LG, Aspinall D (1984) The requirement for low-intensity light in the accumulation of proline as a response to water deficit. J Exp Bot 35:209–218CrossRefGoogle Scholar
  72. Kanade M (2008) Effect of foliar application of salicylic acid on polyphenol, proline and carbohydrates content in wheat and sorghum. Adv Plant Sci 21:321–322Google Scholar
  73. Kavi Kishor PB, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of ∆1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394Google Scholar
  74. Kavi Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438Google Scholar
  75. Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330PubMedCrossRefGoogle Scholar
  76. Khan W, Prithiviraj B, Smith DL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492PubMedCrossRefGoogle Scholar
  77. Khodary SEA (2004) Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. Int J Agr Biol 6:5–8Google Scholar
  78. Khoo U, Stinson HT (1957) Free amino acid differences between cytoplasmic male sterile and normal fertile anthers. Proc Natl Acad Sci 43:603–607PubMedCrossRefGoogle Scholar
  79. Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K, Shinozaki K (1996) A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8:1323–1335PubMedCrossRefGoogle Scholar
  80. Krämer R (1998) Mitochondrial carrier proteins can reversibly change their transport mode: the cases of the aspartate/glutamate and the phosphate carrier. Exp Physiol 83:259–265PubMedGoogle Scholar
  81. Krogaard H, Andersen AS (1983) Free amino acids of Nicotiana alata anthers during development in vivo. Physiol Plant 57:527–531CrossRefGoogle Scholar
  82. Kwart M, Hirner B, Hummel S, Frommer WB (1993) Differential expression of two related amino acid transporters with differing substrate specificity in Arabidopsis thaliana. Plant J 4:993–1002PubMedCrossRefGoogle Scholar
  83. Lansac AR, Sullivan CY, Johnson BE (1996) Accumulation of free proline in sorghum (Sorghum bicolor) pollen. Can J Bot 74:40–45CrossRefGoogle Scholar
  84. Larher F, Leport L, Petrivalsky M, Chappart M (1993) Effectors for the osmoinduced proline response in higher plants. Plant Physiol Biochem 31:911–922Google Scholar
  85. Lasko PF, Brandriss MC (1981) Proline transport in Saccharomyces cerevisiae. J Bacteriol 148:241–247PubMedGoogle Scholar
  86. Lee YH, Tegeder M (2004) Selective expression of a novel high-affinity transport system for acidic and neutral amino acids in the tapetum cells of Arabidopsis flowers. Plant J 40:60–74PubMedCrossRefGoogle Scholar
  87. Lee YH, Foster J, Chen J, Voll LM, Weber APM, Tegeder M (2007) AAP1 transports uncharged amino acids into roots of Arabidopsis. Plant J 50:305–319PubMedCrossRefGoogle Scholar
  88. López-Carrión A, Castellano R, Rosales M, Ruiz J, Romero L (2008) Role of nitric oxide under saline stress: implications on proline metabolism. Biol Plant 52:587–591CrossRefGoogle Scholar
  89. Madan S, Nainawatee H, Jain S, Jain R, Malik M, Chowdhury J (1994) Leaf position-dependent changes in proline, pyrroline-5-carboxylate reductase activity and water relations under salt-stress in genetically stable salt-tolerant somaclones of Brassica juncea L. Plant Soil 163:151–156CrossRefGoogle Scholar
  90. Mani S, Van de Cotte B, Van Montagu M, Verbruggen N (2002) Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. Plant Physiol 128:73–83PubMedCrossRefGoogle Scholar
  91. Martínez C, Pons E, Prats G, León J (2004) Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J 37:209–217PubMedGoogle Scholar
  92. Mascarenhas JP (1993) Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5:1303–1314PubMedCrossRefGoogle Scholar
  93. Matskevitch I, Wagner CA, Stegen C, Bröer S, Noll B, Risler T, Kwon HM, Handler JS, Waldegger S, Busch AE, Lang F (1999) Functional characterization of the betaine/γ-aminobutyric acid transporter BGT-1 expressed in Xenopus oocytes. J Biol Chem 274:16709–16716PubMedCrossRefGoogle Scholar
  94. Mattioli R, Marchese D, D’Angeli S, Altamura M, Costantino P, Trovato M (2008) Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. Plant Mol Biol 66:277–288PubMedCrossRefGoogle Scholar
  95. Mattioli R, Costantino P, Trovato M (2009a) Proline accumulation in plants: not only stress. Plant Signal Behav 4:1016–1018PubMedCrossRefGoogle Scholar
  96. Mattioli R, Falasca G, Sabatini S, Altamura MM, Costantino P, Trovato M (2009b) The proline biosynthetic genes P5CS1 and P5CS2 play overlapping roles in Arabidopsis flower transition but not in embryo development. Physiol Plant 137:72–85CrossRefGoogle Scholar
  97. Mauro ML, Trovato M, Paolis AD, Gallelli A, Costantino P, Altamura MM (1996) The plant oncogene rolD stimulates flowering in transgenic tobacco plants. Dev Biol 180:693–700PubMedCrossRefGoogle Scholar
  98. Meinke D, Muralla R, Sweeney C, Dickerman A (2008) Identifying essential genes in Arabidopsis thaliana. Trends Plant Sci 13:483–491PubMedCrossRefGoogle Scholar
  99. Miller G, Honig A, Stein H, Suzuki N, Mittler R, Zilberstein A (2009) Unraveling Δ1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J Biol Chem 284:26482–26492PubMedCrossRefGoogle Scholar
  100. Misra N, Saxena P (2009) Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci 177:181–189CrossRefGoogle Scholar
  101. Mitchell HJ, Ayliffe MA, Rashid KY, Pryor AJ (2006) A rust-inducible gene from flax (fis1) is involved in proline catabolism. Planta 223:213–222PubMedCrossRefGoogle Scholar
  102. Mitsubuchi H, Nakamura K, Matsumoto S, Endo F (2008) Inborn errors of proline metabolism. J Nutr 138:2016S–2020SPubMedGoogle Scholar
  103. Morbach S, Krämer R (2002) Body shaping under water stress: osmosensing and osmoregulation of solute transport in Bacteria. ChemBioChem 3:384–397PubMedCrossRefGoogle Scholar
  104. Murahama M, Yoshida T, Hayashi F, Ichino T, Sanada Y, Wada K (2001) Purification and characterization of Δ1-pyrroline-5-carboxylate reductase isoenzymes indicating differential distribution in spinach (Spinacia oleracea L.) leaves. Plant Cell Physiol 42:742–750PubMedCrossRefGoogle Scholar
  105. Mutters RG, Ferreira LGR, Hall AE (1989) Proline content of the anthers and pollen of heat-tolerant and heat-sensitive cowpea subjected to different temperatures. Crop Sci 29:1497–1500CrossRefGoogle Scholar
  106. Nakashima K, Satoh R, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1998) A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis. Plant Physiol 118:1233–1241PubMedCrossRefGoogle Scholar
  107. Nanjo T, Kobayashi M, Yoshiba Y, Sanada Y, Wada K, Tsukaya H, Kakubari Y, Yamaguchi-Shinozaki K, Shinosaki K (1999) Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J 18:185–193PubMedCrossRefGoogle Scholar
  108. Nanjo T, Fujita M, Seki M, Kato T, Tabata S, Shinozaki K (2003) Toxicity of free proline revealed in an Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol 44:541–548PubMedCrossRefGoogle Scholar
  109. Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48PubMedCrossRefGoogle Scholar
  110. Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176PubMedCrossRefGoogle Scholar
  111. Nepi M, von Aderkas P, Wagner R, Mugnaini S, Coulter A, Pacini E (2009) Nectar and pollination drops: how different are they? Ann Bot 104:205–219PubMedCrossRefGoogle Scholar
  112. Okumoto S, Schmidt R, Tegeder M, Fischer WN, Rentsch D, Frommer WB, Koch W (2002) High affinity amino acid transporters specifically expressed in xylem parenchyma and developing seeds of Arabidopsis. J Biol Chem 277:45338–45346PubMedCrossRefGoogle Scholar
  113. Okumoto S, Koch W, Tegeder M, Fischer WN, Biehl A, Leister D, Stierhof YD, Frommer WB (2004) Root phloem-specific expression of the plasma membrane amino acid proton co-transporter AAP3. J Exp Bot 55:2155–2168PubMedCrossRefGoogle Scholar
  114. Ötztürk L, Demir Y (2002) In vivo and in vitro protective role of proline. Plant Growth Regul 38:259–264CrossRefGoogle Scholar
  115. Pancheva TV, Popova LP, Uzunova AN (1996) Effects of salicylic acid on growth and photosynthesis in barley plants. J Plant Physiol 149:57–63Google Scholar
  116. Peng Z, Lu Q, Verma DPS (1996) Reciprocal regulation of Δ1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol Gen Genet 253:334–341PubMedGoogle Scholar
  117. Pesci P (1993) Glucose mimics the enhancing effect of light on ABA-induced proline accumulation in hydrated barley and wheat leaves. J Plant Physiol 142:355–359Google Scholar
  118. Phang J, Donald S, Pandhare J, Liu Y (2008) The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids 35:681–690PubMedCrossRefGoogle Scholar
  119. Picault N, Hodges M, Palmieri L, Palmieri F (2004) The growing family of mitochondrial carriers in Arabidopsis. Trends Plant Sci 9:138–146PubMedCrossRefGoogle Scholar
  120. Ramesh V, Gusella JF, Shih VE (1991) Molecular pathology of gyrate atrophy of the choroid and retina due to ornithine aminotransferase deficiency. Mol Biol Med 8:81–93PubMedGoogle Scholar
  121. Raymond MJ, Smirnoff N (2002) Proline metabolism and transport in maize seedlings at low water potential. Ann Bot 89:813–823PubMedCrossRefGoogle Scholar
  122. Regenberg B, Düring-Olsen L, Kielland-Brandt MC, Holmberg S (1999) Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Curr Genet 36:317–328PubMedCrossRefGoogle Scholar
  123. Rentsch D, Hirner B, Schmelzer E, Frommer WB (1996) Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell 8:1437–1446PubMedCrossRefGoogle Scholar
  124. Rentsch D, Schmidt S, Tegeder M (2007) Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581:2281–2289PubMedCrossRefGoogle Scholar
  125. Reversade B, Escande-Beillard N, Dimopoulou A et al (2009) Mutations in PYCR1 cause cutis laxa with progeroid features. Nat Genet 41:1016–1021PubMedCrossRefGoogle Scholar
  126. Ribarits A, Abdullaev A, Tashpulatov A, Richter A, Heberle-Bors E, Touraev A (2007) Two tobacco proline dehydrogenases are differentially regulated and play a role in early plant development. Planta 225:1313–1324PubMedCrossRefGoogle Scholar
  127. Roeßler M, Müller V (2001) Osmoadaptation in bacteria and archaea: common principles and differences. Environ Microbiol 3:743–754CrossRefGoogle Scholar
  128. Rolletschek H, Hosein F, Miranda M, Heim U, Gotz KP, Schlereth A, Borisjuk L, Saalbach I, Wobus U, Weber H (2005) Ectopic expression of an amino acid transporter (VfAAP1) in seeds of Vicia narbonensis and pea increases storage proteins. Plant Physiol 137:1236–1249PubMedCrossRefGoogle Scholar
  129. Rook F, Gerrits N, Kortstee A, van Kampen M, Borrias M, Weisbeek P, Smeekens S (1998) Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J 15:253–263PubMedCrossRefGoogle Scholar
  130. Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616PubMedCrossRefGoogle Scholar
  131. Sanada Y, Ueda H, Kuribayashi K, Andoh T, Hayashi F, Tamai N, Wada K (1995) Novel light-dark change of proline levels in halophyte (Mesembryanthemum crystallinum L.) and glycophytes (Hordeum vulgare L. and Triticum aestivum L.) leaves and roots under salt stress. Plant Cell Physiol 36:965–970Google Scholar
  132. Sánchez E, López-Lefebre LR, García PC, Rivero RM, Ruiz JM, Romero L (2001) Proline metabolism in response to highest nitrogen dosages in green bean plants (Phaseolus vulgaris L. cv. Strike). J Plant Physiol 158:593–598CrossRefGoogle Scholar
  133. Sánchez E, García PC, López-Lefebre LR, Rivero RM, Ruiz JM, Romero L (2002) Proline metabolism in response to nitrogen deficiency in French Bean plants (Phaseolus vulgaris L. cv Strike). Plant Growth Regul 36:261–265CrossRefGoogle Scholar
  134. Sanders A, Collier R, Trethewy A, Gould G, Sieker R, Tegeder M (2009) AAP1 regulates import of amino acids into developing Arabidopsis embryos. Plant J 59:540–552PubMedCrossRefGoogle Scholar
  135. Satoh R, Nakashima K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2002) ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. Plant Physiol 130:709–719PubMedCrossRefGoogle Scholar
  136. Satoh R, Fujita Y, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K (2004) A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis. Plant Cell Physiol 45:309–317PubMedCrossRefGoogle Scholar
  137. Savouré A, Hua XJ, Bertauche N, van Montagu M, Verbruggen N (1997) Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana. Mol Gen Genet 254:104–109PubMedCrossRefGoogle Scholar
  138. Saxena S, Kaushik N, Sharma R (2008) Effect of abscisic acid and proline on in vitro flowering in Vigna aconitifolia. Biol Plant 52:181–183CrossRefGoogle Scholar
  139. Schmidt R, Stransky H, Koch W (2007) The amino acid permease AAP8 is important for early seed development in Arabidopsis thaliana. Planta 226:805–813PubMedCrossRefGoogle Scholar
  140. Schwacke R, Grallath S, Breitkreuz KE, Stransky E, Stransky H, Frommer WB, Rentsch D (1999) LeProT1, a transporter for proline, glycine betaine, and γ-amino butyric acid in tomato pollen. Plant Cell 11:377–392PubMedCrossRefGoogle Scholar
  141. Sekine T, Kawaguchi A, Hamano Y, Takagi H (2007) Desensitization of feedback inhibition of the Saccharomyces cerevisiae γ-glutamyl kinase enhances proline accumulation and freezing tolerance. Appl Environ Microbiol 73:4011–4019PubMedCrossRefGoogle Scholar
  142. Sleator RD, Hill C (2002) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71PubMedCrossRefGoogle Scholar
  143. Steber CM, McCourt P (2001) A role for brassinosteroids in germination in Arabidopsis. Plant Physiol 125:763–769PubMedCrossRefGoogle Scholar
  144. Stewart CR, Morris CJ, Thompson JF (1966) Changes in amino acid content of excised leaves during incubation. III. Role of sugar in the accumulation of proline in wilted leaves. Plant Physiol 41:1585–1590PubMedCrossRefGoogle Scholar
  145. Stines AP, Naylor DJ, Høj PB, van Heeswijck R (1999) Proline accumulation in developing grapevine fruit occurs independently of changes in the levels of Δ1-pyrroline-5-carboxylate synthetase mRNA or protein. Plant Physiol 120:923–931PubMedCrossRefGoogle Scholar
  146. Stránská J, Kopečný D, Tylichowá M, Snégaroff J, Šebela M (2008) Ornithine δ-aminotransferase: an enzyme implicated in salt tolerance in higher plants. Plant Signal Behav 3:929–935PubMedGoogle Scholar
  147. Strizhov N, Ábrahám E, Ökrész L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12:557–569PubMedCrossRefGoogle Scholar
  148. Su YH, Frommer WB, Ludewig U (2004) Molecular and functional characterization of a family of amino acid transporters from Arabidopsis. Plant Physiol 136:3104–3113PubMedCrossRefGoogle Scholar
  149. Svennerstam H, Ganeteg U, Bellini C, Näsholm T (2007) Comprehensive screening of Arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids. Plant Physiol 143:1853–1860PubMedCrossRefGoogle Scholar
  150. Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97Google Scholar
  151. Székely G, Ábrahám E, Cséplő Á, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28PubMedCrossRefGoogle Scholar
  152. Tanner J (2008) Structural biology of proline catabolism. Amino Acids 35:719–730PubMedCrossRefGoogle Scholar
  153. Tomenchok DM, Brandriss MC (1987) Gene–enzyme relationships in the proline biosynthetic pathway of Saccharomyces cerevisiae. J Bacteriol 169:5364–5372PubMedGoogle Scholar
  154. Trovato M, Maras B, Linhares F, Costantino P (2001) The plant oncogene rolD encodes a functional ornithine cyclodeaminase. Proc Natl Acad Sci 98:13449–13453PubMedCrossRefGoogle Scholar
  155. Tully RE, Hanson AD, Nelsen CE (1979) Proline accumulation in water-stressed barley leaves in relation to translocation and the nitrogen budget. Plant Physiol 63:518–523PubMedCrossRefGoogle Scholar
  156. Turchetto-Zolet A, Margis-Pinheiro M, Margis R (2009) The evolution of pyrroline-5-carboxylate synthase in plants: a key enzyme in proline synthesis. Mol Genet Genomics 281:87–97PubMedCrossRefGoogle Scholar
  157. Ueda A, Shi W, Sanmiya K, Shono M, Takabe T (2001) Functional analysis of salt-inducible proline transporter of barley roots. Plant Cell Physiol 42:1282–1289PubMedCrossRefGoogle Scholar
  158. Ueda A, Yamamoto-Yamane Y, Takabe T (2007) Salt stress enhances proline utilization in the apical region of barley roots. Biochem Biophys Res Commun 355:61–66PubMedCrossRefGoogle Scholar
  159. Ueda A, Shi W, Shimada T, Miyake H, Takabe T (2008) Altered expression of barley proline transporter causes different growth responses in Arabidopsis. Planta 227:277–286PubMedCrossRefGoogle Scholar
  160. Venekamp JH, Koot JTM (1984) The distribution of free amino acids, especially of proline, in the organs of field bean plants. Vicia faba L., during development in the field. J Plant Physiol 116:343–349Google Scholar
  161. Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759PubMedCrossRefGoogle Scholar
  162. Verbruggen N, Villarroel R, Van Montagu M (1993) Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol 103:771–781PubMedCrossRefGoogle Scholar
  163. Verbruggen N, Hua XJ, May M, Van Montagu M (1996) Environmental and developmental signals modulate proline homeostasis: evidence for a negative transcriptional regulator. Proc Natl Acad Sci 93:8787–8791PubMedCrossRefGoogle Scholar
  164. Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J Exp Bot 57:201–212PubMedCrossRefGoogle Scholar
  165. Verslues PE, Sharp RE (1999) Proline accumulation in maize (Zea mays L.) primary roots at low water potentials. II. Metabolic source of increased proline deposition in the elongation zone. Plant Physiol 119:1349–1360PubMedCrossRefGoogle Scholar
  166. Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A, Hayakawa S, Suzuki S, Futsuhara Y, Kawamitsu Y, Takabe T, Takabe T (2002) Functional characterization of betaine/proline transporters in betaine-accumulating mangrove. J Biol Chem 277:18373–18382PubMedCrossRefGoogle Scholar
  167. Wang P, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178:703–718PubMedCrossRefGoogle Scholar
  168. Weibull J, Ronquist F, Brishammar S (1990) Free amino acid composition of leaf exudates and phloem sap: a comparative study in oats and barley. Plant Physiol 92:222–226PubMedCrossRefGoogle Scholar
  169. Weigelt K, Küster H, Radchuk R, Müller M, Weichert H, Fait A, Fernie AR, Saalbach I, Weber H (2008) Increasing amino acid supply in pea embryos reveals specific interactions of N and C metabolism, and highlights the importance of mitochondrial metabolism. Plant J 55:909–926PubMedCrossRefGoogle Scholar
  170. Weltmeier F, Ehlert A, Mayer CS, Dietrich K, Wang X, Schütze K, Alonso R, Harter K, Vicente-Carbajosa J, Dröge-Laser W (2006) Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. EMBO 25:3133–3143CrossRefGoogle Scholar
  171. Williamson CL, Slocum RD (1992) Molecular cloning and evidence for osmoregulation of the Δ1-pyrroline-5-carboxylate reductase (proC) gene in pea (Pisum sativum L.). Plant Physiol 100:1464–1470PubMedCrossRefGoogle Scholar
  172. Wood JM (2006) Osmosensing by bacteria. Sci STKE 357:pe43CrossRefGoogle Scholar
  173. Wood JM, Bremer E, Csonka LN, Kraemer R, Poolman B, van der Heide T, Smith LT (2001) Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp Biochem Physiol A Mol Integr Physiol 130:437–460PubMedCrossRefGoogle Scholar
  174. Yang SL, Lan SS, Gong M (2009) Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. J Plant Physiol 166:1694–1699PubMedCrossRefGoogle Scholar
  175. Yoon KA, Nakamura Y, Arakawa H (2004) Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J Hum Genet 49:134–140PubMedCrossRefGoogle Scholar
  176. Yusuf M, Syed Aiman H, Barket A, Shamsul H, Qazi F, Aqil A (2008) Effect of salicylic acid on salinity-induced changes in Brassica juncea. J Integr Plant Biol 50:1096–1102PubMedCrossRefGoogle Scholar
  177. Zhang HQ, Croes AF (1983) Proline metabolism in pollen: degradation of proline during germination and early tube growth. Planta 159:46–49CrossRefGoogle Scholar
  178. Zhang LP, Mehta SK, Liu ZP, Yang ZM (2008) Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii. Plant Cell Physiol 49:411–419PubMedCrossRefGoogle Scholar
  179. Zhao MG, Chen L, Zhang LL, Zhang WH (2009) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151:755–767PubMedCrossRefGoogle Scholar
  180. Zhou Y, Zhu W, Bellur PS, Rewinkel D, Becker DF (2008) Direct linking of metabolism and gene expression in the proline utilization A protein from Escherichia coli. Amino Acids 35:711–718PubMedCrossRefGoogle Scholar
  181. Zúñiga G, Argandoña VH, Corcuera LJ (1989) Distribution of glycine-betaine and proline in water stressed and unstressed barley leaves. Phytochemistry 28:419–420CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Silke Lehmann
    • 1
  • Dietmar Funck
    • 2
  • László Szabados
    • 3
  • Doris Rentsch
    • 1
  1. 1.Institute of Plant SciencesUniversity of BernBernSwitzerland
  2. 2.Department of Plant Physiology and BiochemistryKonstanz UniversityKonstanzGermany
  3. 3.Institute of Plant BiologyBiological Research CenterSzegedHungary

Personalised recommendations