Amino Acids

, Volume 40, Issue 1, pp 15–28 | Cite as

Venomics: a new paradigm for natural products-based drug discovery

  • Irina Vetter
  • Jasmine L. Davis
  • Lachlan D. Rash
  • Raveendra Anangi
  • Mehdi Mobli
  • Paul F. Alewood
  • Richard J. Lewis
  • Glenn F. King
Review Article


The remarkable potency and pharmacological diversity of animal venoms has made them an increasingly valuable source of lead molecules for drug and insecticide discovery. Nevertheless, most of the chemical diversity encoded within these venoms remains uncharacterized, despite decades of research, in part because of the small quantities of venom available. However, recent advances in the miniaturization of bioassays and improvements in the sensitivity of mass spectrometry and NMR spectroscopy have allowed unprecedented access to the molecular diversity of animal venoms. Here, we discuss these technological developments in the context of establishing a high-throughput pipeline for venoms-based drug discovery.


Drug discovery Animal venoms Venomics Venom peptides Natural products 


  1. Anangi R, Chen C-Y, Cheng C-H, Chen Y-C, Chen C-C, Chu Y-P, Chang C-H, Jeng W-Y, Shiu J-H, Chuang W-J (2007) Expression of snake venom toxins in Pichia pastoris. Toxin Rev 26:169–187CrossRefGoogle Scholar
  2. Baell JB, Duggan PJ, Lok YP (2004) ω-Conotoxins and approaches to their nonpeptide mimetics. Aust J Chem 57:179–185CrossRefGoogle Scholar
  3. Bahrami A, Assadi AH, Markley JL, Eghbalnia HR (2009) Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy. PLoS Comput Biol 5:e1000307Google Scholar
  4. Bennett PB, Guthrie HR (2003) Trends in ion channel drug discovery: advances in screening technologies. Trends Biotechnol 21:563–569PubMedCrossRefGoogle Scholar
  5. Biass D, Dutertre S, Gerbault A, Menou JL, Offord R, Favreau P, Stöcklin R (2009) Comparative proteomic study of the venom of the piscivorous cone snail Conus consors. J Proteomics 72:210–218PubMedCrossRefGoogle Scholar
  6. Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67:2141–2153PubMedCrossRefGoogle Scholar
  7. Calvete JJ, Juarez P, Sanz L (2007) Snake venomics: strategy and applications. J Mass Spectrom 42:1405–1414PubMedCrossRefGoogle Scholar
  8. Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutierrez JM (2009) Venoms, venomics, antivenomics. FEBS Lett 583:1736–1743PubMedCrossRefGoogle Scholar
  9. Chen CY, Cheng CH, Chen YC, Lee JC, Chou SH, Huang W, Chuang WJ (2006) Preparation of amino-acid-type selective isotope labeling of protein expressed in Pichia pastoris. Proteins 62:279–287PubMedCrossRefGoogle Scholar
  10. Chen J, Zhang Y, Rong M, Zhao L, Jiang L, Zhang D, Wang M, Xiao Y, Liang S (2009) Expression and characterization of jingzhaotoxin-34, a novel neurotoxin from the venom of the tarantula Chilobrachys jingzhao. Peptides 30:1042–1048PubMedCrossRefGoogle Scholar
  11. Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432:829–837PubMedCrossRefGoogle Scholar
  12. Cregg JM (2007) Introduction: distinctions between Pichia pastoris and other expression systems. Methods Mol Biol 389:1–10PubMedCrossRefGoogle Scholar
  13. Cregg JM, Cereghino JL, Shi J, Higgins DR (2000) Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16:23–52PubMedCrossRefGoogle Scholar
  14. Cushman DW, Ondetti MA (1991) History of the design of captopril and related inhibitors of angiotensin converting enzyme. Hypertension 17:589–592PubMedGoogle Scholar
  15. D’Suze G, Schwartz EF, Garcia-Gomez BI, Sevcik C, Possani LD (2009) Molecular cloning and nucleotide sequence analysis of genes from a cDNA library of the scorpion Tityus discrepans. Biochimie 91:1010–1019PubMedCrossRefGoogle Scholar
  16. Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138PubMedCrossRefGoogle Scholar
  17. Davis J, Jones A, Lewis RJ (2009) Remarkable inter- and intra-species complexity of conotoxins revealed by LC/MS. Peptides 30:1222–1227PubMedCrossRefGoogle Scholar
  18. Dawson PE, Muir TW, Clark-Lewis I, Kent SBH (1994) Synthesis by native chemical ligation. Science 266:776–779PubMedCrossRefGoogle Scholar
  19. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306PubMedCrossRefGoogle Scholar
  20. Denyer J, Worley J, Cox B, Allenby G, Banks M (1998) HTS approaches to voltage-gated ion channel drug discovery. Drug Discov Today 3:323–332CrossRefGoogle Scholar
  21. Ding K, Gronenborn AM (2002) Novel 2D triple resonance NMR experiments for sequential resonance assignments of proteins. J Magn Reson 156:262–268PubMedCrossRefGoogle Scholar
  22. Ducancel F, Boulain JC, Trémeau O, Ménez A (1989) Direct expression in E. coli of a functionally active protein A—snake toxin fusion protein. Protein Eng 3:139–143PubMedCrossRefGoogle Scholar
  23. Dunlop J, Bowlby M, Peri R, Vasilyev D, Arias R (2008) High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat Rev Drug Discov 7:358–368PubMedCrossRefGoogle Scholar
  24. Edwards L, Hessinger DA (2000) Portuguese Man-of-war (Physalia physalis) venom induces calcium influx into cells by permeabilizing plasma membranes. Toxicon 38:1015–1028PubMedCrossRefGoogle Scholar
  25. Eghbalnia HR, Bahrami A, Tonelli M, Hallenga K, Markley JL (2005) High-resolution iterative frequency identification for NMR as a general strategy for multidimensional data collection. J Am Chem Soc 127:12528–12536PubMedCrossRefGoogle Scholar
  26. Escoubas P, King GF (2009) Venomics as a drug discovery platform. Expert Rev Proteomics 6:221–224PubMedCrossRefGoogle Scholar
  27. Escoubas P, Bernard C, Lambeau G, Lazdunski M, Darbon H (2003) Recombinant production and solution structure of PcTx1, the specific peptide inhibitor of ASIC1a proton-gated cation channels. Protein Sci 12:1332–1343PubMedCrossRefGoogle Scholar
  28. Escoubas P, Sollod BL, King GF (2006) Venom landscapes: mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach. Toxicon 47:650–663PubMedCrossRefGoogle Scholar
  29. Escoubas P, Quinton L, Nicholson GM (2008) Venomics: unravelling the complexity of animal venoms with mass spectrometry. J Mass Spectrom Rev 43:279–295CrossRefGoogle Scholar
  30. Fiordalisi JJ, James PL, Zhang Y, Grant GA (1996) Facile production of native-like κ-bungarotoxin in yeast: an enhanced system for the production of a neuronal nicotinic acetylcholine receptor probe. Toxicon 34:213–224PubMedCrossRefGoogle Scholar
  31. Francischetti IM, My-Pham V, Harrison J, Garfield MK, Ribeiro JM (2004) Bitis gabonica (Gaboon viper) snake venom gland: toward a catalog for the full-length transcripts (cDNA) and proteins. Gene 337:55–69PubMedCrossRefGoogle Scholar
  32. Frohman MA (1993) Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: thermal RACE. Methods Enzymol 218:340–356PubMedCrossRefGoogle Scholar
  33. Froy O, Zilberberg N, Gordon D, Turkov M, Gilles N, Stankiewicz M, Pelhate M, Loret E, Oren DA, Shaanan B, Gurevitz M (1999) The putative bioactive surface of insect-selective scorpion excitatory neurotoxins. J Biol Chem 274:5769–5776PubMedCrossRefGoogle Scholar
  34. Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RC (2009) The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet 10:483–511PubMedCrossRefGoogle Scholar
  35. Fukuyama Y, Iwamoto S, Tanaka K (2006) Rapid sequencing and disulfide mapping of peptides containing disulfide bonds by using 1, 5-diaminonaphthalene as a reductive matrix. J Mass Spectrom 41:191–201PubMedCrossRefGoogle Scholar
  36. Glickman JF, Wu X, Mercuri R, Illy C, Bowen BR, He Y, Sills M (2002) A comparison of AlphaScreen, TR-FRET, and TRF as assay methods for FXR nuclear receptors. J Biomol Screen 7:3–10PubMedCrossRefGoogle Scholar
  37. Güntert P (2004) Automated NMR structure calculation with CYANA. Methods Mol Biol 278:353–378PubMedGoogle Scholar
  38. Guo RT, Chou LJ, Chen YC, Chen CY, Pari K, Jen CJ, Lo SJ, Huang SL, Lee CY, Chang TW, Chaung WJ (2001) Expression in Pichia pastoris and characterization by circular dichroism and NMR of rhodostomin. Proteins 43:499–508PubMedCrossRefGoogle Scholar
  39. Hamelin M, Meng X, Cuddy M, Korsun K, Ondeyka J, Simpson PB, Cully DF, Priest BT (2005) A high-throughput assay for modulators of ligand-gated chloride channels. Assay Drug Dev Technol 3:59–64PubMedCrossRefGoogle Scholar
  40. Harvey AL (1995) From venoms to toxins to drugs. Chem Ind 22:914–916Google Scholar
  41. Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227PubMedCrossRefGoogle Scholar
  42. Hiller S, Fiorito F, Wüthrich K (2005) Automated projection spectroscopy (APSY). Proc Natl Acad Sci USA 102:10876–108881PubMedCrossRefGoogle Scholar
  43. Hoch JC, Stern AS (2002) Maximum entropy reconstruction, spectrum analysis and deconvolution in multidimensional nuclear magnetic resonance. Methods Enzymol 338:159–178CrossRefGoogle Scholar
  44. Jakubowski JA, Kelley WP, Sweedler JV (2006) Screening for post-translational modifications in conotoxins using liquid chromatography/mass spectrometry: an important component of conotoxin discovery. Toxicon 47:688–699PubMedCrossRefGoogle Scholar
  45. Jensen JE, Durek T, Alewood PF, Adams DJ, King GF, Rash LD (2009) Chemical synthesis and folding of APETx2, a potent and selective inhibitor of acid sensing ion channel 3. Toxicon 54:56–61PubMedCrossRefGoogle Scholar
  46. Ji W, Zhang X, Hu H, Chen J, Gao Y, Liang S, An C (2005) Expression and purification of Huwentoxin-I in baculovirus system. Protein Expr Purif 41:454–458PubMedCrossRefGoogle Scholar
  47. Jiang L, Peng L, Chen J, Zhang Y, Xiong X, Liang S (2008) Molecular diversification based on analysis of expressed sequence tags from the venom glands of the Chinese bird spider Ornithoctonus huwena. Toxicon 51:1479–1489PubMedCrossRefGoogle Scholar
  48. Jiang L, Peng L, Zhang Y, Chen J, Zhang D, Liang S (2009) Expression, purification and characterization of a group of lectin-like peptides from the spider Ornithoctonus huwena. Peptides 30:669–674PubMedCrossRefGoogle Scholar
  49. Kaas Q, Westermann JC, Halai R, Wang CK, Craik DJ (2008) ConoServer, a database for conopeptide sequences and structures. Bioinformatics (Oxford, England) 24:445–446CrossRefGoogle Scholar
  50. Kazimierczuk K, Koźmiński W, Zhukov I (2006) Two-dimensional Fourier transform of arbitrarily sampled NMR data sets. J Magn Reson 179:323–328PubMedCrossRefGoogle Scholar
  51. King GF, Mobli M (2010) Determination of peptide and protein structures using NMR spectroscopy. In: Mander L, Liu H-W (eds) Comprehensive natural products chemistry II. Elsevier, AmsterdamGoogle Scholar
  52. Kita M, Black DS, Ohno O, Yamada K, Kigoshi H, Uemura D (2009) Duck-billed platypus venom peptides induce Ca2+ influx in neuroblastoma cells. J Am Chem Soc 131:18038–18039PubMedCrossRefGoogle Scholar
  53. Kitaguchi T, Swartz KJ (2005) An inhibitor of TRPV1 channels isolated from funnel web spider venom. Biochemistry 44:15544–15549PubMedCrossRefGoogle Scholar
  54. Kjeldsen F, Giessing AM, Ingrell CR, Jensen ON (2007) Peptide sequencing and characterization of post-translational modifications by enhanced ion-charging and liquid chromatography electron-transfer dissociation tandem mass spectrometry. Anal Chem 79:9243–9252PubMedCrossRefGoogle Scholar
  55. Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220PubMedCrossRefGoogle Scholar
  56. Korolkova YV, Kozlov SA, Lipkin AV, Pluzhnikov KA, Hadley JK, Filippov AK, Brown DA, Angelo K, Strobaek D, Jespersen T, Olesen SP, Jensen BS, Grishin EV (2001) An ERG channel inhibitor from the scorpion Buthus eupeus. J Biol Chem 276:9868–9876PubMedCrossRefGoogle Scholar
  57. Kozlov S, Malyavka A, McCutchen B, Lu A, Schepers E, Herrmann R, Grishin E (2005) A novel strategy for the identification of toxin like structures in spider venom. Proteins 59:131–140PubMedCrossRefGoogle Scholar
  58. Krajewski JL, Dickerson IM, Potter LT (2001) Site-directed mutagenesis of m1-toxin 1: two amino acids responsible for stable toxin binding to M1 muscarinic receptors. Mol Pharmacol 60:725–731PubMedGoogle Scholar
  59. Kupče Ē, Freeman R (2004) Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy. J Am Chem Soc 126:6429–6440PubMedCrossRefGoogle Scholar
  60. Legros C, Feyfant E, Sampieri F, Rochat H, Bougis PE, Martin-Eauclaire MF (1997) Influence of a NH2-terminal extension on the activity of KTX2, a K+ channel blocker purified from Androctonus australis scorpion venom. FEBS Lett 417:123–129PubMedCrossRefGoogle Scholar
  61. Legros C, Kaabi H, El Ayeb M, Ceard B, Vacher H, Bougis PE, Martin-Eauclaire MF (2001) Use of fusion protein constructs to generate potent immunotherapy and protection against scorpion toxins. Vaccine 20:934–942PubMedCrossRefGoogle Scholar
  62. Levandoski MM, Caffery PM, Rogowski RS, Lin Y, Shi Q-L, Hawrot E (2000) Recombinant expression of α-bungarotoxin in Pichia pastoris facilitates identification of mutant toxins engineered to recognize neuronal nicotinic acetylcholine receptors. J Neurochem 74:1279–1289PubMedCrossRefGoogle Scholar
  63. Lewis RJ, Garcia ML (2003) Therapeutic potential of venom peptides. Nat Rev Drug Discov 2:790–802PubMedCrossRefGoogle Scholar
  64. Liao Z, Cao J, Li S, Yan X, Hu W, He Q, Chen J, Tang J, Xie J, Liang S (2007) Proteomic and peptidomic analysis of the venom from Chinese tarantula Chilobrachys jingzhao. Proteomics 7:1892–1907PubMedCrossRefGoogle Scholar
  65. Luan T, Orekhov VY, Gutmanas A, Billeter M (2005) Accuracy and robustness of three-way decomposition applied to NMR data. J Magn Reson 174:188–199PubMedCrossRefGoogle Scholar
  66. Macarron R (2006) Critical review of the role of HTS in drug discovery. Drug Discov Today 11:277–279PubMedCrossRefGoogle Scholar
  67. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270PubMedCrossRefGoogle Scholar
  68. Malmodin D, Billeter M (2005) Multiway decomposition of NMR spectra with coupled evolution periods. J Am Chem Soc 127:13486–13487PubMedCrossRefGoogle Scholar
  69. Malone J, Trautmann M, Wilhelm K, Taylor K, Kendall DM (2009) Exenatide once weekly for the treatment of type 2 diabetes. Expert Opin Investig Drugs 18:359–367PubMedCrossRefGoogle Scholar
  70. Miljanich GP (2004) Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr Med Chem 11:3029–3040PubMedGoogle Scholar
  71. Mobli M, Maciejewski MW, Gryk MR, Hoch JC (2007a) An automated tool for maximum entropy reconstruction of biomolecular NMR spectra. Nat Methods 4:467–468PubMedCrossRefGoogle Scholar
  72. Mobli M, Maciejewski MW, Gryk MR, Hoch JC (2007b) Automatic maximum entropy spectral reconstruction in NMR. J Biomol NMR 39:133–139PubMedCrossRefGoogle Scholar
  73. Mobli M, Mijenović T, Bermel W, King GF (2009) ASAP-NMR: a high-throughput pipeline for rapid protein structure determination. In: Proceedings of third Asia-Pacific NMR symposiumGoogle Scholar
  74. Mobli M, Stern AS, Bermel W, King GF, Hoch JC (2010) A non-uniformly sampled 4D HCC(CO)NH-TOCSY experiment processed using maximum entropy for rapid protein sidechain assignment. J Magn Reson:in pressGoogle Scholar
  75. Newton KA, Clench MR, Deshmukh R, Jeyaseelan K, Strong PN (2007) Mass fingerprinting of toxic fractions from the venom of the Indian red scorpion, Mesobuthus tamulus: biotope-specific variation in the expression of venom peptides. Rapid Commun Mass Spectrom 21:3467–3476PubMedCrossRefGoogle Scholar
  76. Noël F, Mendonça-Silva DL, Quintas LE (2001) Radioligand binding assays in the drug discovery process: potential pitfalls of high throughput screenings. Arzneimittel-Forschung 51:169–173PubMedGoogle Scholar
  77. Olivera BM (2006) Conus peptides: biodiversity-based discovery and exogenomics. J Biol Chem 281:31173–31177PubMedCrossRefGoogle Scholar
  78. Ortholand JY, Ganesan A (2004) Natural products and combinatorial chemistry: back to the future. Curr Opin Chem Biol 8:271–280PubMedCrossRefGoogle Scholar
  79. Park SP, Kim BM, Koo JY, Cho H, Lee CH, Kim M, Na HS, Oh U (2008) A tarantula spider toxin, GsMTx4, reduces mechanical and neuropathic pain. Pain 137:208–217PubMedCrossRefGoogle Scholar
  80. Paterson I, Anderson EA (2005) The renaissance of natural products as drug candidates. Science 310:451–453PubMedCrossRefGoogle Scholar
  81. Peng K, Lin Y, Liang SP (2006) Nuclear magnetic resonance studies on huwentoxin-XI from the Chinese bird spider Ornithoctonus huwena: 15N labeling and sequence-specific 1H, 15N nuclear magnetic resonance assignments. Acta Biochim Biophys Sin (Shanghai) 38:457–466CrossRefGoogle Scholar
  82. Pham Trung N, Fitches E, Gatehouse JA (2006) A fusion protein containing a lepidopteran-specific toxin from the South Indian red scorpion (Mesobuthus tamulus) and snowdrop lectin shows oral toxicity to target insects. BMC Biotechnol 6:18PubMedCrossRefGoogle Scholar
  83. Pimenta AM, Stocklin R, Favreau P, Bougis PE, Martin-Eauclaire MF (2001) Moving pieces in a proteomic puzzle: mass fingerprinting of toxic fractions from the venom of Tityus serrulatus (Scorpiones, Buthidae). Rapid Commun Mass Spectrom 15:1562–1572PubMedCrossRefGoogle Scholar
  84. Prinz WA, Åslund F, Holmgren A, Beckwith J (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272:15661–15667PubMedCrossRefGoogle Scholar
  85. Quinton L, Demeure K, Dobson R, Gilles N, Gabelica V, De Pauw E (2007) New method for characterizing highly disulfide-bridged peptides in complex mixtures: application to toxin identification from crude venoms. J Proteome Res 6:3216–3223PubMedCrossRefGoogle Scholar
  86. Richardson M, Pimenta AM, Bemquerer MP, Santoro MM, Beirao PS, Lima ME, Figueiredo SG, Bloch C Jr, Vasconcelos EA, Campos FA, Gomes PC, Cordeiro MN (2006) Comparison of the partial proteomes of the venoms of Brazilian spiders of the genus Phoneutria. Comp Biochem Physiol C Toxicol Pharmacol 142:173–187PubMedCrossRefGoogle Scholar
  87. Rivers DB, Crawley T, Bauser H (2005) Localization of intracellular calcium release in cells injured by venom from the ectoparasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) and dependence of calcium mobilization on G-protein activation. J Insect Physiol 51:149–160PubMedCrossRefGoogle Scholar
  88. Schroeder CI, Smythe ML, Lewis RJ (2004) Development of small molecules that mimic the binding of ω-conotoxins at the N-type voltage-gated calcium channel. Mol Divers 8:127–134PubMedCrossRefGoogle Scholar
  89. Schwartz EF, Diego-Garcia E, Rodríguez de la Vega RC, Possani LD (2007) Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones). BMC Genomics 8:119PubMedCrossRefGoogle Scholar
  90. Seidler J, Zinn N, Boehm ME, Lehmann WD (2009) De novo sequencing of peptides by tandem mass spectrometry. Proteomics 10:634–649CrossRefGoogle Scholar
  91. Shao F, Xiong Y-M, Zhu R-H, Ling M-H, Chi C-W, Wang D-C (1999) Expression and purification of the BmK M1 neurotoxin from the scorpion Buthus martensii Karsch. Protein Expr Purif 17:358–365PubMedCrossRefGoogle Scholar
  92. Shiu J-H, Chen C-Y, Chang L-S, Chen Y-C, Chen Y-C, Lo Y-H, Liu YC, Chuang W-J (2004) Solution structure of γ-bungarotoxin: the functional significance of amino acid residues flanking the RGD motif in integrin binding. Proteins 57:839–849PubMedCrossRefGoogle Scholar
  93. Siemens J, Zhou S, Piskorowski R, Nikai T, Lumpkin EA, Basbaum AI, King D, Julius D (2006) Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature 444:208–212PubMedCrossRefGoogle Scholar
  94. Sollod BL, Wilson D, Zhaxybayeva O, Gogarten JP, Drinkwater R, King GF (2005) Were arachnids the first to use combinatorial peptide libraries? Peptides 26:131–139PubMedCrossRefGoogle Scholar
  95. Szyperski T, Wider G, Bushweller JH, Wüthrich K (1993) Reduced dimensionality in triple resonance NMR experiments. J Am Chem Soc 115:9307–9308CrossRefGoogle Scholar
  96. Taouji S, Dahan S, Bossé R, Chevet E (2009) Current screens based on the AlphaScreen technology for deciphering cell signalling pathways. Curr Genomics 10:93–101PubMedCrossRefGoogle Scholar
  97. Tedford HW, Fletcher JI, King GF (2001) Functional significance of the β-hairpin in the insecticidal neurotoxin ω-atracotoxin-Hv1a. J Biol Chem 276:26568–26576PubMedCrossRefGoogle Scholar
  98. Tedford HW, Sollod BL, Maggio F, King GF (2004) Australian funnel-web spiders: master insecticide chemists. Toxicon 43:601–618PubMedCrossRefGoogle Scholar
  99. Ueberheide BM, Fenyo D, Alewood PF, Chait BT (2009) Rapid sensitive analysis of cysteine rich peptide venom components. Proc Natl Acad Sci USA 106:6910–6915PubMedCrossRefGoogle Scholar
  100. Ullman EF, Kirakossian H, Singh S, Wu ZP, Irvin BR, Pease JS, Switchenko AC, Irvine JD, Dafforn A, Skold CN, Wagner DB (1994) Luminescent oxygen channeling immunoassay: measurement of particle binding kinetics by chemiluminescence. Proc Natl Acad Sci USA 91:5426–5430PubMedCrossRefGoogle Scholar
  101. Ullman EF, Kirakossian H, Switchenko AC, Ishkanian J, Ericson M, Wartchow CA, Pirio M, Pease J, Irvin BR, Singh S, Singh R, Patel R, Dafforn A, Davalian D, Skold C, Kurn N, Wagner DB (1996) Luminescent oxygen channeling assay (LOCI): sensitive, broadly applicable homogeneous immunoassay method. Clin Chem 42:1518–1526PubMedGoogle Scholar
  102. Vetter I, Lewis RJ (2009) Characterization of endogenous calcium responses in neuronal cell lines. Biochem Pharmacol 79:908–920PubMedCrossRefGoogle Scholar
  103. Wang K, Yin S-J, Lu M, Yi H, Dai C, Xu X-J, Cao Z-J, Wu Y-L, Li W-X (2006) Functional analysis of the α-neurotoxin, BmαTX14, derived from the Chinese scorpion, Buthus martensii Karsch. Biotechnol Lett 28:1767–1772PubMedCrossRefGoogle Scholar
  104. Wood DL, Miljenovic T, Cai S, Raven RJ, Kaas Q, Escoubas P, Herzig V, Wilson D, King GF (2009) ArachnoServer: a database of protein toxins from spiders. BMC Genomics 10:375PubMedCrossRefGoogle Scholar
  105. Wu J-J, He L-L, Zhou Z, Chi C-W (2002) Gene expression, mutation, and structure-function relationship of scorpion toxin BmP05 active on SKCa channels. Biochemistry 41:2844–2849PubMedCrossRefGoogle Scholar
  106. Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New YorkGoogle Scholar
  107. Xu J, Wang X, Ensign B, Li M, Wu L, Guia A (2001) Ion-channel assay technologies: quo vadis? Drug Discov Today 6:1278–1287PubMedCrossRefGoogle Scholar
  108. You WK, Jang YJ, Chung KH, Kim DS (2003) A novel disintegrin-like domain of a high molecular weight metalloprotease inhibits platelet aggregation. Biochem Biophys Res Commun 309:637–642PubMedCrossRefGoogle Scholar
  109. Yuan C, Jin Q, Tang X, Hu W, Cao R, Yang S, Xiong J, Xie C, Xie J, Liang S (2007) Proteomic and peptidomic characterization of the venom from the Chinese bird spider, Ornithoctonus huwena Wang. J Proteome Res 6:2792–27801PubMedCrossRefGoogle Scholar
  110. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73PubMedCrossRefGoogle Scholar
  111. Zheng W, Spencer RH, Kiss L (2004) High throughput assay technologies for ion channel drug discovery. Assay Drug Dev Technol 2:543–552PubMedCrossRefGoogle Scholar
  112. Zilberberg N, Gordon D, Pelhate M, Adams ME, Norris TM, Zlotkin E, Gurevitz M (1996) Functional expression and genetic alteration of an alpha scorpion neurotoxin. Biochemistry 35:10215–10222PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Irina Vetter
    • 1
  • Jasmine L. Davis
    • 1
  • Lachlan D. Rash
    • 1
  • Raveendra Anangi
    • 1
  • Mehdi Mobli
    • 1
  • Paul F. Alewood
    • 1
  • Richard J. Lewis
    • 1
  • Glenn F. King
    • 1
  1. 1.Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia

Personalised recommendations