Amino Acids

, Volume 39, Issue 1, pp 205–217 | Cite as

The involvement of NMDA and AMPA receptors in the mechanism of antidepressant-like action of zinc in the forced swim test

  • B. Szewczyk
  • E. Poleszak
  • M. Sowa-Kućma
  • A. Wróbel
  • S. Słotwiński
  • J. Listos
  • P. Wlaź
  • A. Cichy
  • A. Siwek
  • M. Dybała
  • K. Gołembiowska
  • A. Pilc
  • Gabriel Nowak
Original Article

Abstract

Antidepressant-like activity of zinc in the forced swim test (FST) was demonstrated previously. Enhancement of such activity by joint administration of zinc and antidepressants was also shown. However, mechanisms involved in this activity have not yet been established. The present study examined the involvement of the NMDA and AMPA receptors in zinc activity in the FST in mice and rats. Additionally, the influence of zinc on both glutamate and aspartate release in the rat brain was also determined. Zinc-induced antidepressant-like activity in the FST in both mice and rats was antagonized by N-methyl-d-aspartic acid (NMDA, 75 mg/kg, i.p.) administration. Moreover, low and ineffective doses of NMDA antagonists (CGP 37849, L-701,324, d-cycloserine, and MK-801) administered together with ineffective doses of zinc exhibit a significant reduction of immobility time in the FST. Additionally, we have demonstrated the reduction of immobility time by AMPA receptor potentiator, CX 614. The antidepressant-like activity of both CX 614 and zinc in the FST was abolished by NBQX (an antagonist of AMPA receptor, 10 mg/kg, i.p.), while the combined treatment of sub-effective doses of zinc and CX 614 significantly reduces the immobility time in the FST. The present study also demonstrated that zinc administration potentiated a veratridine-evoked glutamate and aspartate release in the rat’s prefrontal cortex and hippocampus. The present study further suggests the antidepressant properties of zinc and indicates the involvement of the NMDA and AMPA glutamatergic receptors in this activity.

Keywords

Forced swim test Antidepressant Zinc NMDA AMPA Glutamate receptors 

References

  1. Alt A, Witkin JM, Bleakman D (2005) AMPA receptor potentiators as novel antidepressants. Curr Pharm Des 11:1511–1527CrossRefPubMedGoogle Scholar
  2. Alt A, Nisenbaum ES, Bleakman D, Jeffrey MW (2006) A role for AMPA receptors in mood disorders. Biochem Pharmacol 71:1273–1288CrossRefPubMedGoogle Scholar
  3. Arai AC, Kessler M, Rogers G, Lynch G (2000) Effects of the potent ampakine CX614 on hippocampal and recombinant AMPA receptors: interactions with cyclothiazide and GYKI 52466. Mol Pharmacol 58:802–813PubMedGoogle Scholar
  4. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354CrossRefPubMedGoogle Scholar
  5. Bleakman D, Alt A, Witkin JM (2007) AMPA receptors in the therapeutic management of depression. CNS Neurol Disord Drug Targets 2:117–126CrossRefGoogle Scholar
  6. Cardoso CC, Lobato KR, Binfare RW, Ferreira PK, Rosa AO, Santos AR, Rodriques AL (2009) Evidence for the involvement of the monoaminergic system in the antidepressant-like effect of magnesium. Prog Neuropsychopharmacol Biol Psychiatry 33:235–242CrossRefPubMedGoogle Scholar
  7. Cieslik K, Klenk-Majewska B, Danilczuk Z, Wrobel A, Lupina T, Ossowska G (2007) Influence of zinc supplementation on imipramine effect in a chronic unpredictable stress (CUS) model in rats. Pharmacol Rep 59:46–52PubMedGoogle Scholar
  8. Corniola RS, Tassabehji NM, Hare J, Sharma G, Levenson CW (2008) Zinc deficiency impairs neuronal precursor cell proliferation and induces apoptosis via p53-mediated mechanisms. Brain Res 1237:52–61CrossRefPubMedGoogle Scholar
  9. Cunha MP, Machado DG, Bettio LE, Capra JC, Rodrigues AL (2008) Interaction of zinc with antidepressants in tail suspension test. Prog Neuropsychopharmacol Biol Psychiatry 32:1913–1920CrossRefPubMedGoogle Scholar
  10. Decollogne S, Tomas A, Lecerf C, Adamowicz E, Seman M (1997) NMDA receptor complex blockade by oral administration of magnesium: comparison with MK-801. Pharmacol Biochem Behav 58:261–268CrossRefPubMedGoogle Scholar
  11. Dybala M, Siwek A, Poleszak E, Pilc A, Nowak G (2008) Lack of NMDA–AMPA interaction in antidepressant-like effect of CGP 37849, an antagonist of NMDA receptor, in the forced swim test. J Neural Transm 115:1519–1520CrossRefPubMedGoogle Scholar
  12. Fagg GE, Olpe HR, Pozza MF, Baud J, Steinmann M, Schmutz M, Portet C et al (1990) CGP 37849 and CGP 39551: novel and competitive N-methyl-d-aspartate receptor antagonists with oral activity. Br J Pharmacol 99:791–797PubMedGoogle Scholar
  13. Franco JL, Posser T, Brocardo PS, Trevisan R, Uliano-Silva M, Gabilan NH, Santos AR, Lleal RB, Rodrigues AL, Farina M, Dafre Al (2008) Involvement of glutathione, ERK1/2 phosphorylation and BDNF expression in the antidepressant-like effect of zinc. Behav Brain Res 188:316–323CrossRefPubMedGoogle Scholar
  14. Freed WJ, Dillon-Carter O, Kleinman JE (1993) Properties of [3H]AMPA binding in postmortem human brain from psychotic subjects and controls: increases in caudate nucleus associated with suicide. Exp Neurol 121:48–56CrossRefPubMedGoogle Scholar
  15. Füruzan Y, Erden BF, Ulak G, Utkan T, Gacar N (2000) Antidepressant-like effect of 7-nitroindazole in the forced swimming test in rats. Psychopharmacology 149:41–44CrossRefGoogle Scholar
  16. Golembiowska K, Zylewska A (1999) Effect of antidepressant drugs on veratridine-evoked glutamate and aspartate release in rat prefrontal cortex. Pol J Pharmacol 51:63–70PubMedGoogle Scholar
  17. Hansen CR Jr, Malecha M, Mackenzie TB, Kroll J (1983) Cooper and zinc deficiencies in association with depression and neurological findings. Biol Psychiatry 18:395–401PubMedGoogle Scholar
  18. Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut off and cell death pathways. Nat Neurosci 5:405–414PubMedGoogle Scholar
  19. Harkin AJ, Bruce KH, Craft B, Paul IA (1999) Nitric oxide synthase inhibitors have antidepressant-like properties in mice. 1. Acute treatments are active in the forced swim test. Eur J Pharmacol 372:207–213CrossRefPubMedGoogle Scholar
  20. Hashimoto K (2009) Emerging role of glutamate in the pathophysiology of major depressive disorder. Brain Res Rev 61:105–123CrossRefPubMedGoogle Scholar
  21. Hindmarch I (2001) Expanding the horizons of depression: beyond the monoamine hypothesis. Hum Psychopharmacol 16:203–218CrossRefPubMedGoogle Scholar
  22. Hollister LE, Csernansky JG (1990) Clinical Pharmacology of Psychotherapeutic Drugs, 3rd edn. Churchill Livingstone, New YorkGoogle Scholar
  23. Jourdi H, Hsu Y-T, Zhou M, Qin Q, Bi X, Baudry M (2009) Positive AMPA receptor modulation rapidly stimulates BDNF release and increases dendritic mRNA translation. J Neurosci 29:8688–8697CrossRefPubMedGoogle Scholar
  24. Keitner GI, Ryan CE, Solomon DA (2006) Realistic expectations and a disease management model for depressed patients with persistent symptoms. J Clin Psychiatry 67:1412–1421CrossRefPubMedGoogle Scholar
  25. Kendig IV, Charen S, Lepine LT (1956) Psychological side-effects induced by cycloserine in the treatment of pulmonary tuberculosis. Am Rev Tuberc 73:438–441PubMedGoogle Scholar
  26. Knecht R, Chang J-Y (1986) Liquid chromatographic determination of amino acids after gas-phase hydrolysis and derivatization with (dimethylamino)azobenzenesulfonyl chloride. Anal Chem 58:2375–2379CrossRefPubMedGoogle Scholar
  27. Kroczka B, Zieba A, Dudek D, Pilc A, Nowak G (2000) Zinc exhibits an antidepressant-like effect in the forced swimming test in mice. Pol J Pharmacol 52:403–406PubMedGoogle Scholar
  28. Kroczka B, Branski P, Pałucha A, Pilc A, Nowak G (2001) Antidepressant-like properties of zinc in rodent forced swim test. Brain Res Bull 55:297–300CrossRefPubMedGoogle Scholar
  29. Kugaya A, Sanacora G (2005) Beyond monoamines: glutamatergic function in mood disorders. CNS Spectr 10:808–819PubMedGoogle Scholar
  30. Kulagowski JJ, Baker R, Curtis NR, Leeson PD, Mawer IM, Mosesley AM, Ridgill MP et al (1994) 3′-(Arylmethyl)-and 3′(aryloxy)-3-phenyl-4-hydroxyquinolin-2(IH)-ones: orally active antagonists of the glycine site on the NMDA receptor. J Med Chem 37:1402–1405CrossRefPubMedGoogle Scholar
  31. Levenson CW (2006a) Regulation of the NMDA receptor: implications for neuropsychological development. Nutr Rev 64:428–432CrossRefPubMedGoogle Scholar
  32. Levenson CW (2006b) Zinc: the new antidepressant. Nutr Rev 64:39–42CrossRefPubMedGoogle Scholar
  33. Lopes T, Neubauer P, Boje KM (1997) Chronic administration of NMDA glycine partial agonists induces tolerance in the Porsolt swim test. Pharmacol Biochem Behav 58:1059–1064CrossRefPubMedGoogle Scholar
  34. Machado-Vieira R, Manji HK, Zarate CA (2009) The role of the tripartite glutamatergic synapse in the pathophysiology and therapeutics of mood disorders. Neuroscientist 15:525–539CrossRefPubMedGoogle Scholar
  35. Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63:349–352CrossRefPubMedGoogle Scholar
  36. Maes M, D’Haese PC, Scharpe S, D’Hondt (1994) Hypozincemia in depression. J Affect Disord 2:135–140Google Scholar
  37. Maes M, Vandoolaeghe E, Neels H, Demedts P, Wauters A, Meltzer HY, Altamura C (1997) Lower serum zinc in major depression is a sensitive marker of treatment resistance and of the immune/inflammatory response in that illness. Biol Psychiatry 42:349–358CrossRefPubMedGoogle Scholar
  38. Maes M, De Vos N, Demedts P, Wauters A (1999) Lower serum zinc in major depression in relation to changes in serum acute phase proteins. J Affect Disord 56:189–194CrossRefPubMedGoogle Scholar
  39. Maj J, Rogoz Z, Skuza G, Sowinska H (1992) Effects of MK-801 and antidepressant drugs in the forced swimming test in rats. Eur Neuropsychopharmacol 2:37–41CrossRefPubMedGoogle Scholar
  40. McLoughlin IJ, Hodge SJ (1990) Zinc in depressive disorder. Acta Psychiatr Scand 82:451–453CrossRefPubMedGoogle Scholar
  41. Meador-Woodruff JH, Hogg AJ Jr, Smith RE (2001) Striatal inotropic glutamate receptor expression schizophrenia, bipolar disorder, and major depressive disorder. Brain Res Bull 55:631–640CrossRefPubMedGoogle Scholar
  42. Mittal CK, Harrell WB, Mehta CS (1995) Interaction of heavy metal toxicants with brain constitutive nitric oxide synthase. Mol Cell Biochem 149–150:263–265CrossRefPubMedGoogle Scholar
  43. Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. Neuroscience 17:2921–2927PubMedGoogle Scholar
  44. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteeggia LM (2002) Neurobiology of depression. Neuron 34:13–25CrossRefPubMedGoogle Scholar
  45. Nowak G, Schlegel-Zawadzka M (1999) Alterations in serum and brain trace element levels after antidepressant treatment: part I. Zinc Biol Trace Elem Res 67:85–92CrossRefGoogle Scholar
  46. Nowak G, Ordway GA, Paul IA (1995) Alterations in the N-methyl-d-aspartate (NMDA) receptor complex in the frontal cortex of suicide victims. Brain Res 675:157–164CrossRefPubMedGoogle Scholar
  47. Nowak G, Siwek M, Dudek D, Zieba A, Pilc A (2003a) Effect of zinc supplementation on antidepressant therapy in unipolar depression: a preliminary placebo-controlled study. Pol J Pharmacol 55:1143–1147PubMedGoogle Scholar
  48. Nowak G, Szewczyk B, Wieronska JM, Branski P, Palucha A, Pilc A, Sadlik K, Piekoszewski W (2003b) Antidepressant-like effects of acute and chronic treatment with zinc in forced swim test and olfactory bulbectomy model in rats. Brain Res Bull 61:159–164CrossRefPubMedGoogle Scholar
  49. Opoka W, Sowa-Kucma M, Kowalska M, Bas B, Golembiowska K, Nowak G (2008) Intraperitoneal zinc administration increases extracellular zinc in the rat prefrontal cortex. J Physiol Pharmacol 59:477–487PubMedGoogle Scholar
  50. Panconi E, Roux J, Altenbaumer M, Hampe S, Porsolt RD (1993) MK-801 and enantiomers: potential antidepressants or false positives in classical screening models? Pharmacol Biochem Behav 46:15–20CrossRefPubMedGoogle Scholar
  51. Petrie RX, Reid IC, Stewart CA (2000) The N-methyl-d-aspartate receptor, synaptic plasticity and depressive disorder. A critical review. Pharmacol Ther 87:11–25CrossRefPubMedGoogle Scholar
  52. Pittenger C, Sanacora G, Krystal JH (2007) The NMDA receptor as a therapeutic target in major depressive disorder. CNS Neurolog Disord Drug Targets 6:101–115CrossRefGoogle Scholar
  53. Poleszak E (2007) Modulation of antidepressant-like activity of magnesium by serotonergic system. J Neural Transm 114:1129–1134CrossRefPubMedGoogle Scholar
  54. Poleszak E, Szewczyk B, Kędzierska E, Wlaz P, Pilc A, Nowak G (2004) Antidepressant- and anxiolytic-like activity of magnesium in mice. Pharmacol Biochem Behav 78:7–12CrossRefPubMedGoogle Scholar
  55. Poleszak E, Wlaz P, Kedzierska E, Radziwon-Zaleska M, Pilc A, Fidecka S, Nowak G (2005a) Effects of acute and chronic treatment with magnesium in the forced swim test in rats. Pharmacol Rep 57:654–658PubMedGoogle Scholar
  56. Poleszak E, Wlaz P, Szewczyk B, Kedzierska E, Wyska E, Librowski T, Szymura-Oleksiak J, Fidecka S, Pilc A, Nowak G (2005b) Enhancement of antidepressant-like activity by joint administration of imipramine and magnesium in the forced swim test: Behavioral and pharmacokinetic studies in mice. Pharmacol Biochem Behav 81:524–529CrossRefPubMedGoogle Scholar
  57. Poleszak E, Wlaz P, Kedzierska E, Nieoczym D, Wrobel A, Fidecka S, Pilc A, Nowak G (2007a) NMDA/glutamate mechanism of antidepressant-like action of magnesium in forced swim test in mice. Pharmacol Biochem Behav 88:158–164CrossRefPubMedGoogle Scholar
  58. Poleszak E, Wlaz P, Wrobel A, Dybala M, Sowa M, Fidecka S, Pilc A, Nowak G (2007b) Activation of the NMDA/glutamate receptor complex antagonizes the NMDA antagonist-induced antidepressant-like effects in the forced swim test. Pharmacol Rep 59:595–600PubMedGoogle Scholar
  59. Poleszak E, Szewczyk B, Wlaz A, Fidecka S, Wlaz P, Pilc A, Nowak G (2008) d-serine, a selective glycine/N-methyl-d-aspartate receptor agonist, antagonizes the antidepressant-like effects of magnesium and zinc in mice. Pharmacol Rep 60:996–1000PubMedGoogle Scholar
  60. Porsolt RD, Bertin A, Jalfre M (1977) Behavioural despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336PubMedGoogle Scholar
  61. Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rat: A new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391CrossRefPubMedGoogle Scholar
  62. Preskorn SH, Baker B, Kolluri S, Menniti FS, Krams M, Landen JW (2008) An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-d-aspartate antagonist, CP-101, 606 in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol 28:631–637CrossRefPubMedGoogle Scholar
  63. Przegalinski E, Tatarczynska E, Chojnacka-Wojcik E (1998) Anxiolytic- and antidepressant-like effects of an antagonist at glycine B receptors. Pol J Pharmacol 50:349–354PubMedGoogle Scholar
  64. Rosa AO, Lin J, Calixto JB, Santos AR, Rodrigues AL (2003) Involvement of NMDA receptors and L-arginine-nitric oxide pathway in the antidepressant-like effects of zinc in mice. Behav Brain Res 144:87–93CrossRefPubMedGoogle Scholar
  65. Rowland LM, Bustillo JR, Mullins PG, Jung RE, Lenroot R, Landgraf E, Barrow R, Yeo R, Lauriello J, Brooks WM (2005) Effects of ketamine on anterior cingulated glutamate metabolism in healthy humans: a 4-T proton MRS study. Am J Psychiatry 162:394–396CrossRefPubMedGoogle Scholar
  66. Rubio G, San L, Lopez-Munoz F, Alamo C (2004) Reboxetine adjunct for partial or nonresponders to antidepressant treatment. Affect Disord 81:67–72CrossRefGoogle Scholar
  67. Sanacora G, Rothman DL, Mason G, Krystal JH (2003) Clinical studies implementing glutamate neurotransmission in mood disorders. Ann NY Acad Sci 1003:292–308CrossRefPubMedGoogle Scholar
  68. Sanacora G, Zarate CA, Krystal JH, Manji HK (2008) Targeting the glutamatergic system develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov 7:426–437CrossRefPubMedGoogle Scholar
  69. Skolnick P (1999) Antidepressants for the new millennium. Eur J Pharmacol 375:31–40CrossRefPubMedGoogle Scholar
  70. Skolnick P (2008) AMPA receptors: a target for novel antidepressants? Biol Psychiatry 63:347–348CrossRefPubMedGoogle Scholar
  71. Skolnick P, Layer RT, Popik P, Nowak G, Paul IA, Trullas R (1996) Adaptation of N-methyl-d-aspartate (NMDA) receptors following antidepressant treatment: Implications for the pharmacotherapy of depression. Pharmacopsychiatry 29:23–26CrossRefPubMedGoogle Scholar
  72. Skolnick P, Popik P, Trullas R (2009) Glutamate-based antidepressants: 20 years on. Trends Pharmacol Sci. doi:10.1016/j.tips.2009.09.002
  73. Sowa-Kucma M, Legutko B, Szewczyk B, Novak K, Znojek P, Poleszak E, Papp M, Pilc, Nowak G (2008) Antidepressant-like activity of zinc: further behavioral and molecular evidence. J Neural Transm 115:1621–1628Google Scholar
  74. Stier C, Skorka G, Sohr R, Ott T (1996) Time course and role of extracellular Ca2+ in veratridine-induced glutamate release. NeuroReport 7:401–404CrossRefPubMedGoogle Scholar
  75. Svenningsson P, Tzavara ET, Witkin JM, Fienberg AA, Nomikos GG, Greengard P (2002) Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac). Proc Nat Acad Sci 99:3182–3187CrossRefPubMedGoogle Scholar
  76. Szewczyk B, Branski P, Wieronska JM, Palucha A, Pilc A, Nowak G (2002) Interaction of zinc with antidepressants in the forced swimming test in mice. Pol J Pharmacol 54:681–685PubMedGoogle Scholar
  77. Szewczyk B, Poleszak E, Sowa M, Siwek M, Dudek D, Ryszewska-Pokrasniewicz B, Radziwon-Zaleska M et al (2008) Antidepressant activity of zinc and magnesium in view of the current hypotheses of antidepressant action. Pharmacol Rep 60:588–599PubMedGoogle Scholar
  78. Szewczyk B, Poleszak E, Wlaz P, Wrobel A, Blicharska E, Cichy A, Dybala M, Siwek A, Pomierny-Chamiolo L, Piotrowska A, Branski P, Pilc A, Nowak G (2009) The involvement of serotonergic system in the antidepressant effect of zinc in the forced swim test. Prog Neuropsychopharmacol Biol Psychiatry 33:323–329CrossRefPubMedGoogle Scholar
  79. Tassabehji NM, Corniola RS, Alshingiti A, Levenson CW (2008) Zinc deficiency induces depression-like symptoms in adult rats. Physiol Behav 95:365–369CrossRefPubMedGoogle Scholar
  80. Trullas R, Skolnick P (1990) Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 185:1–10CrossRefPubMedGoogle Scholar
  81. Vizi ES (2000) Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system. Pharmacol Rev 52:63–89PubMedGoogle Scholar
  82. Whittle N, Lubec G, Singewald (2009) Zinc deficiency induces enhancement depression-like bahaviour and altered limbic activation reversed by antidepressant treatment in mice. Amino Acids 36:147–158Google Scholar
  83. Wolosker H, Dumin E, Balan L, Foltyn VN (2008) d-amino acids in the brain: d-serine in neurotransmission and neurodegeneration. FEBS J 275:3514–3526CrossRefPubMedGoogle Scholar
  84. Wong EH, Kemp JA, Priestley T, Knight AR, Woodruff GN, Iversen LL (1986) The anticonvulsant MK-801 is a potent N-methyl-d-aspartate antagonist. Proc Natl Acad Sci USA 83:104–108Google Scholar
  85. Wu G (2009) Amino Acids: metabolism, functions, and nutrition. Amino Acids 37:1–17CrossRefPubMedGoogle Scholar
  86. Zarate CA, Quiroz J, Payne J, Manji HK (2002) Modulators of the glutamatergic system: implications for the development of improved therapeutics in mood disorders. Psychopharmacol Bull 36:35–83PubMedGoogle Scholar
  87. Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A-randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • B. Szewczyk
    • 1
  • E. Poleszak
    • 4
  • M. Sowa-Kućma
    • 1
  • A. Wróbel
    • 5
  • S. Słotwiński
    • 6
  • J. Listos
    • 4
  • P. Wlaź
    • 7
  • A. Cichy
    • 2
  • A. Siwek
    • 2
  • M. Dybała
    • 2
  • K. Gołembiowska
    • 1
  • A. Pilc
    • 1
    • 3
  • Gabriel Nowak
    • 1
    • 2
  1. 1.Institute of PharmacologyPolish Academy of SciencesKrakówPoland
  2. 2.Chair of Pharmacobiology, Collegium MedicumJagiellonian UniversityKrakówPoland
  3. 3.Faculty of Health Sciences, Collegium MedicumJagiellonian UniversityKrakówPoland
  4. 4.Department of Pharmacology and PharmacodynamicsMedical University of LublinLublinPoland
  5. 5.Second Department of GynecologyMedical University of LublinLublinPoland
  6. 6.Department of Rehabilitation and PhysiologyMedical University of LublinLublinPoland
  7. 7.Department of Animal Physiology, Institute of BiologyMaria Curie-Skłodowska UniversityLublinPoland

Personalised recommendations