Amino Acids

, Volume 38, Issue 2, pp 451–460

Structural biology of S-adenosylmethionine decarboxylase

Review Article


S-adenosylmethionine decarboxylase (AdoMetDC) is a critical enzyme in the polyamine biosynthetic pathway and a subject of many structural and biochemical investigations for anti-cancer and anti-parasitic therapy. The enzyme undergoes an internal serinolysis reaction as a post-translational modification to generate the active site pyruvoyl group for the decarboxylation process. The crystal structures of AdoMetDC from Homo sapiens, Solanum tuberosum, Thermotoga maritima, and Aquifex aeolicus have been determined. Numerous crystal structures of human AdoMetDC and mutants have provided insights into the mechanism of autoprocessing, putrescine activation, substrate specificity, and inhibitor design to the enzyme. The comparison of the human and potato enzyme with the T. maritima and A. aeolicus enzymes supports the hypothesis that the eukaryotic enzymes evolved by gene duplication and fusion. The residues implicated in processing and activity are structurally conserved in all forms of the enzyme, suggesting a divergent evolution of AdoMetDC.


Polyamines Protein evolution Putrescine activation Cation–π interactions Pyruvoyl cofactor 



S-adenosylmethionine decarboxylase






S-adenosylmethionine methyl ester


Human AdoMetDC


Potato AdoMetDC


Thermotoga maritima AdoMetDC


Ornithine decarboxylase


Methylglyoxal bis(guanylhydrazone)






5′-Deoxy-5′-(N-dimethyl)amino-8-methyl adenosine






Trypanosomabrucei AdoMetDC


  1. Albert A, Dhanaraj V, Genschel U, Khan G, Ramjee MK, Pulido R, Sibanda BL, von Delft F, Witty M, Blundell TL, Smith AG, Abell C (1998) Crystal structure of aspartate decarboxylase at 2.2 Å resolution provides evidence for an ester in protein self-processing. Nat Struct Biol 5:289–293CrossRefPubMedGoogle Scholar
  2. Bacchi CJ, Nathan HC, Yarlet N, Goldberg B, McCann PP, Sjoerdsma A, Saric M, Clarkson AB (1994) Combination chemotherapy of drug-resistant Trypanosoma brucei rhodesiense infections in mice using DL-α-difluoromethylornithine and standard trypanocides. Antimicrob Agents Chemother 38:563–569PubMedGoogle Scholar
  3. Bale S, Lopez MM, Makhatadze GI, Fang Q, Pegg AE, Ealick SE (2008) Structural basis for putrescine activation of human S-adenosylmethionine decarboxylase. Biochemistry 47:13404–13417CrossRefPubMedGoogle Scholar
  4. Bale S, Brooks W, Hanes JW, Mahesan AM, Guida WC, Ealick SE (2009) Role of the Sulfonium center in determining the ligand specificity of human S-adenosylmethionine decarboxylase. Biochemistry 48:6423–6430CrossRefPubMedGoogle Scholar
  5. Basuroy UK, Gerner EW (2006) Emerging concepts in targeting the polyamine metabolic pathway in epithelial cancer chemoprevention and chemotherapy. J Biochem 139:27–33CrossRefPubMedGoogle Scholar
  6. Bennett EM, Ekstrom JE, Pegg AE, Ealick SE (2002) Monomeric S-adenosylmethionine decarboxylase from plants provides an alternative to putrescine stimulation. Biochemistry 41:14509–14517CrossRefPubMedGoogle Scholar
  7. Beswick TC, Willert EK, Phillips MA (2006) Mechanisms of allosteric regulation of Trypanosoma cruzi S-adenosylmethionine decarboxylase. Biochemistry 45:7797–7807CrossRefPubMedGoogle Scholar
  8. Brooks WH, McCloskey DE, Daniel KG, Ealick SE, Secrist JA 3rd, Waud WR, Pegg AE, Guida WC (2007) In silico chemical library screening and experimental validation of a novel 9-aminoacridine based lead-inhibitor of human S-adenosylmethionine decarboxylase. J Chem Inf Model 47:1897–1905CrossRefPubMedGoogle Scholar
  9. Casero RA Jr, Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6:373–390CrossRefPubMedGoogle Scholar
  10. Clyne T, Kinch LN, Phillips MA (2002) Putrescine activation of Trypanosoma cruzi S-adenosylmethionine decarboxylase. Biochemistry 41:13207–13216CrossRefPubMedGoogle Scholar
  11. Ekstrom JE, Matthews II, Stanley BA, Pegg AE, Ealick SE (1999) The crystal structure of human S-adenosylmethionine decarboxylase at 2.25 Å resolution reveals a novel fold. Structure 7:583–595CrossRefPubMedGoogle Scholar
  12. Ekstrom JL, Tolbert WD, Xiong H, Pegg AE, Ealick SE (2001) Structure of a human S-adenosylmethionine decarboxylase self-processing ester intermediate and mechanism of putrescine stimulation of processing as revealed by the H243A mutant. Biochemistry 40:9495–9504CrossRefPubMedGoogle Scholar
  13. Fabian CJ, Kimler BF, Brady DA, Mayo MS, Chang CH, Ferraro JA, Zalles CM, Stanton AL, Masood S, Grizzle WE, Boyd NF, Arneson DW, Johnson KA (2002) A phase II breast cancer chemoprevention trial of oral alpha-difluoromethylornithine: breast tissue, imaging, and serum and urine biomarkers. Clin Cancer Res 8:3105–3117PubMedGoogle Scholar
  14. Gallagher T, Snell EE, Hackert ML (1989) Pyruvoyl-dependent histidine decarboxylase. Active site structure and mechanistic analysis. J Biol Chem 264:12737–12743PubMedGoogle Scholar
  15. Gallagher T, Rozwarski DA, Ernst SR, Hackert ML (1993) Refined structure of the pyruvoyl-dependent histidine decarboxylase from Lactobacillus 30a. J Mol Biol 230:516–528CrossRefPubMedGoogle Scholar
  16. Gerner EW, Meyskens FL Jr (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4:781–792CrossRefPubMedGoogle Scholar
  17. Gerner EW, Meyskens FL Jr, Goldschmid S, Lance P, Pelot D (2007) Rationale for, and design of, a clinical trial targeting polyamine metabolism for colon cancer chemoprevention. Amino Acids 33:189–195CrossRefPubMedGoogle Scholar
  18. Hackert ML, Pegg AE (1997) Pyruvoyl-dependent enzymes, comprehensive biological catalysis. In: Sinnott ML (eds) Academic Press, London, pp 201–216Google Scholar
  19. Hoyt MA, Williams-Abbott LJ, Pitkin JW, Davis RH (2000) Cloning and expression of the S-adenosylmethionine decarboxylase gene of Neurospora crassa and processing of its product. Mol Gen Genet 263:664–673CrossRefPubMedGoogle Scholar
  20. Kim AD, Graham DE, Seeholzer SH, Markham GD (2000) S-Adenosylmethionine decarboxylase from archaeon Methanococcus jannaschii: identification of a novel family of pyruvol enzymes. J Bacteriol 182:6667–6672CrossRefPubMedGoogle Scholar
  21. Lu ZJ, Markham GD (2007) Metal ion activation of S-adenosylmethionine decarboxylase reflects cation charge density. Biochemistry 46:8172–8180CrossRefPubMedGoogle Scholar
  22. Markham GD, Norrby PO, Bock CW (2002) S-adenosylmethionine conformations in solution and in protein complexes: conformational influences of the sulfonium group. Biochemistry 41:7636–7646CrossRefPubMedGoogle Scholar
  23. McCloskey DE, Bale S, Secrist JA, Tiwari A, Moss TH, Valiyaveettil J, Brooks WH, Guida WC, Pegg AE, Ealick SE (2009) New insights into the design of inhibitors of human S-adenosylmethionine decarboxylase: studies of adenine C(8) substitution in structural analogues of S-adenosylmethionine. J Med Chem 52:1388–1407CrossRefGoogle Scholar
  24. Meyskens FL Jr, Gerner EW (1999) Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin Cancer Res 5:945–951PubMedGoogle Scholar
  25. Millward MJ, Joshua A, Kefford R, Aamdal S, Thomson D, Hersey P, Toner G, Lynch K (2005) Multi-centre phase II trial of the polyamine synthesis inhibitor SAM486A (CGP48664) in patients with metastatic melanoma. Invest New Drugs 23:253–256CrossRefPubMedGoogle Scholar
  26. Ndjonka D, Da’dara A, Walter RD, Luersen K (2003) Caenorhabditis elegans S-adenosylmethionine decarboxylase is highly stimulated by putrescine but exhibits a low specificity for activator binding. Biol Chem 384:83–91CrossRefPubMedGoogle Scholar
  27. Pankaskie M, Abdel-Monem MM (1980) Inhibitors of polyamine biosynthesis 8: irreversible inhibition of mammalian S-adenosyl-l-methionine decarboxylase by substrate analogs. J Med Chem 23:121–127CrossRefPubMedGoogle Scholar
  28. Pegg AE (1988) Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy. Cancer Res 48:759–774PubMedGoogle Scholar
  29. Pegg AE, Jacobs G (1983) Comparison of inhibitors of S-adenosylmethionine decarboxylase from different species. Biochem J 213:495–502PubMedGoogle Scholar
  30. Pegg AE, Xiong H, Feith D, Shantz LM (1998) S-adenosylmethionine decarboxylase: structure, function and regulation by polyamines. Biochem Soc Trans 26:580–586, 526Google Scholar
  31. Schmitzberger F, Kilkenny ML, Lobley CM, Webb ME, Vinkovic M, Matak-Vinkovic D, Witty M, Chirgadze DY, Smith AG, Abell C, Blundell TL (2003) Structural constraints on protein self-processing in l-aspartate-α-decarboxylase. EMBO J 22:6193–6204CrossRefPubMedGoogle Scholar
  32. Sekowska A, Coppée J-Y, Le Caer J-P, Martin-Verstraete I, Danchin A (2000) S-adenosylmethionine decarboxylase of Bacillus subtilis is closely related to archaebacterial counterparts. Mol Microbiol 36:1135–1147CrossRefPubMedGoogle Scholar
  33. Soriano EV, McCloskey DE, Kinsland C, Pegg AE, Ealick SE (2008) Structures of the N47A and E109Q mutant proteins of pyruvoyl-dependent arginine decarboxylase from Methanococcus jannaschii. Acta Crystallogr D Biol Crystallogr 64:377–382CrossRefPubMedGoogle Scholar
  34. Tabor CW, Tabor H (1984a) Methionine adenosyltransferase (S-adenosylmethionine synthetase) and S-adenosylmethionine decarboxylase. Advan Enzymol Related Areas Mol Biol 56:251–282CrossRefGoogle Scholar
  35. Tabor CW, Tabor H (1984b) Polyamines. Annu Rev Biochem 53:749–790CrossRefPubMedGoogle Scholar
  36. Tolbert DW, Ekstrom JL, Mathews II, Secrist JAI, Kapoor P, Pegg AE, Ealick SE (2001) The structural basis for substrate specificity and inhibition of human S-adenosylmethionine decarboxylase. Biochemistry 40:9484–9494CrossRefPubMedGoogle Scholar
  37. Tolbert WD, Graham DE, White RH, Ealick SE (2003a) Pyruvoyl-dependent arginine decarboxylase from Methanococcus jannaschii: crystal structures of the self-cleaved and S53A proenzyme forms. Structure 11:285–294CrossRefPubMedGoogle Scholar
  38. Tolbert WD, Zhang Y, Cottet SE, Bennett EM, Ekstrom JL, Pegg AE, Ealick SE (2003b) Mechanism of human S-adenosylmethionine decarboxylase proenzyme processing as revealed by the structure of the S68A mutant. Biochemistry 42:2386–2395CrossRefPubMedGoogle Scholar
  39. Toms AV, Kinsland C, McCloskey DE, Pegg AE, Ealick SE (2004) Evolutionary links as revealed by the structure of Thermotoga maritima S-Adenosylmethionine decarboxylase. J Biol Chem 279:33837–33846CrossRefPubMedGoogle Scholar
  40. van Poelje PD, Snell EE (1990) Pyruvol-dependent enzymes. Ann Rev Biochem 59:29–59CrossRefPubMedGoogle Scholar
  41. Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14CrossRefPubMedGoogle Scholar
  42. Willert EK, Phillips MA (2009) Cross-species activation of trypanosome S-adenosylmethionine decarboxylase by the regulatory subunit prozyme. Mol Biochem Parasitol 168:1–6Google Scholar
  43. Willert EK, Fitzpatrick R, Phillips MA (2007) Allosteric regulation of an essential trypanosome polyamine biosynthetic enzyme by a catalytically dead homolog. Proc Natl Acad Sci USA 104:8275–8280CrossRefPubMedGoogle Scholar
  44. Williams-Ashman HG, Schenone A (1972) Methylglyoxal bis(guanylhydrazone) as a potent inhibitor of mammalian and yeast S-adenosylmethionine decarboxylases. Biochem Biophys Res Commun 46:288–295CrossRefPubMedGoogle Scholar
  45. Xiong H, Pegg AE (1999) Mechanistic studies of the processing of human S-adenosylmethionine decarboxylase proenzyme. Isolation of an ester intermediate. J Biol Chem 274:35059–35066CrossRefPubMedGoogle Scholar
  46. Xiong H, Stanley BA, Pegg AE (1999) Role of cysteine-82 in the catalytic mechanism of human S-adenosylmethionine decarboxylase. Biochemistry 38:2462–2470CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical BiologyCornell UniversityIthacaUSA

Personalised recommendations