Amino Acids

, Volume 38, Issue 2, pp 431–437 | Cite as

Agmatine prevents the Ca2+-dependent induction of permeability transition in rat brain mitochondria

  • V. Battaglia
  • S. Grancara
  • J. Satriano
  • S. Saccoccio
  • E. Agostinelli
  • A. Toninello
Original Article


The arginine metabolite agmatine is able to protect brain mitochondria against the drop in energy capacity by the Ca2+-dependent induction of permeability transition (MPT) in rat brain mitochondria. At normal levels, the amine maintains the respiratory control index and ADP/O ratio and prevents mitochondrial colloid-osmotic swelling and any electrical potential (ΔΨ) drop. MPT is due to oxidative stress induced by the interaction of Ca2+ with the mitochondrial membrane, leading to the production of hydrogen peroxide and, subsequently, other reactive oxygen species (ROS) such as hydroxyl radicals. This production of ROS induces oxidation of sulfhydryl groups, in particular those of two critical cysteines, most probably located on adenine nucleotide translocase, and also oxidation of pyridine nucleotides, resulting in transition pore opening. The protective effect of agmatine is attributable to a scavenging effect on the most toxic ROS, i.e., the hydroxyl radical, thus preventing oxidative stress and consequent bioenergetic collapse.


Rat brain mitochondria Agmatine Mitochondrial permeability transition Ca2+ Reactive oxygen species 



Arginine decarboxylase




Bongkrekic acid


Cyclosporin A


Electrical transmembrane potential

\( \Updelta \mu_{{{\text{H}}^{ + } }} \)

Transmembrane electrochemical gradient






Mitochondrial permeability transition




Nitric oxide-synthase


Ornithine decarboxylase


Rat brain mitochondria


Respiratory control index


Rat kidney mitochondria


Rat liver mitochondria


Reactive oxygen species


Spermidine/spermine-N 1-acetyltransferase




  1. Agostinelli E, Arancia G, Dalla Vedova L, Belli F, Marra M, Salvi M, Toninello A (2004) The biological functions of polyamine oxidation products by amine oxidases: perspectives of clinical applications. Amino Acids 27:347–358CrossRefPubMedGoogle Scholar
  2. Arndt MA, Battaglia V, Parisi E, Lortie MJ, Isome M, Baskerville C, Pizzo DP, Ientile R, Colombatto S, Toninello A, Satriano J (2009) The arginine metabolite agmatine protects mitochondrial function and confers resistance to cellular apoptosis. Am J Physiol Cell Physiol 296:C1411–C1419CrossRefPubMedGoogle Scholar
  3. Battaglia V, Salvi M, Toninello A (2005) Oxidative stress is responsible for mitochondrial permeability transition induction by salicylate in liver mitochondria. J Biol Chem 280:33864–33872CrossRefPubMedGoogle Scholar
  4. Battaglia V, Rossi CA, Colombatto S, Grillo MA, Toninello A (2007) Different behavior of agmatine in liver mitochondria: inducer of oxidative stress or scavenger of reactive oxygen species? Biochim Biophys Acta 1768:1147–1153CrossRefPubMedGoogle Scholar
  5. Battaglia V, Grancara S, Mancon M, Cravanzola C, Colombatto S, Grillo MA, Tempera G, Agostinelli E, Toninello A (2009) Agmatine transport in brain mitochondria. A different mechanism from that of liver mitochondria. Amino Acids (this issue)Google Scholar
  6. Cardillo S, Iuliis AD, Battaglia V, Toninello A, Stevanato R, Vianello F (2009) Novel copper amine oxidase activity from rat liver mitochondria matrix. Arch Biochem Biophys 485:97–101CrossRefPubMedGoogle Scholar
  7. Gorbatjuk OS, Milner TA, Wang G, Regunathan S, Reis DJ (2001) Localization of agmatine in vasopressin and oxytocin neurons of the rat hypothalamic paraventricular and supraoptic nuclei. Exp Neurol 171:235–245CrossRefGoogle Scholar
  8. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766PubMedGoogle Scholar
  9. Grillo MA, Colombatto S (2004) Metabolism and function in animal tissues of agmatine, a biogenic amine formed from arginine. Amino Acids 26:3–8CrossRefPubMedGoogle Scholar
  10. Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RA Jr (1998) The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci USA 95:11140–11145CrossRefPubMedGoogle Scholar
  11. Higashi K, Yoshida K, Nishimura K, Momiyama E, Kashiwagi K, Matsufuji S, Shirahata A, Igarashi K (2004) Structural and functional relationship among diamines in terms of inhibition of cell growth. J Biochem 136:533–539CrossRefPubMedGoogle Scholar
  12. Horyn O, Luhovyy B, Lazarow A, Daikhin Y, Nissim I, Yudkoff M, Nissim I (2005) Biosynthesis of agmatine in isolated mitochondria and perfused rat liver: studies with 15N-labelled arginine. Biochem J 388:419–425CrossRefPubMedGoogle Scholar
  13. Isome M, Lortie MJ, Murakami Y, Parisi E, Matsufuji S, Satriano J (2007) The antiproliferative effects of agmatine correlate with the rate of cellular proliferation. Am J Physiol Cell Physiol 293:C705–C711CrossRefPubMedGoogle Scholar
  14. Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121CrossRefPubMedGoogle Scholar
  15. Li T, Brustovetsky T, Antonsson B, Brustovetsky N (2008) Oligomeric BAX induces mitochondrial permeability transition and complete cytochrome c release without oxidative stress. Biochim Biophys Acta 1777:1409–1421CrossRefPubMedGoogle Scholar
  16. Loschen G, Azzi A, Flohè L (1973) Mitochondrial H2O2 formation at site II. FEBS Lett 33:84–87CrossRefPubMedGoogle Scholar
  17. McStay GP, Clarke SJ, Halestrap AP (2002) Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochem J 367:541–548CrossRefPubMedGoogle Scholar
  18. Nicholls DG (1978) Calcium transport and proton electrochemical potential gradient in mitochondria from guinea-pig cerebral cortex and rat heart. Biochem J 170:511–522PubMedGoogle Scholar
  19. Palmieri F, Klingenberg M (1979) Direct methods for measuring metabolite transport and distribution in mitochondria. Methods Enzymol 56:279–301CrossRefPubMedGoogle Scholar
  20. Raasch W, Schafer U, Chun J, Dominiak P (2001) Biological significance of agmatine, an endogenous ligand at imidazoline binding sites. Br J Pharmacol 133:755–780CrossRefPubMedGoogle Scholar
  21. Regunathan S, Reis DJ (2000) Characterization of arginine decarboxylase in rat brain and liver: distinction from ornithine decarboxylase. J Neurochem 74:2201–2208CrossRefPubMedGoogle Scholar
  22. Rider JE, Hacker A, Mackintosh CA, Pegg AE, Woster PM, Casero RA Jr (2007) Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 33:231–240CrossRefPubMedGoogle Scholar
  23. Rottenberg H (1979) The measurement of membrane potential and ΔpH in cells, organelles, and vesicles. Methods Enzymol 55:547–569CrossRefPubMedGoogle Scholar
  24. Salvi M, Battaglia V, Mancon M, Colombatto S, Cravanzola C, Calheiros R, Marques MP, Grillo MA, Toninello A (2006) Agmatine is transported into liver mitochondria by a specific electrophoretic mechanism. Biochem J 396:337–345CrossRefPubMedGoogle Scholar
  25. Santos AC, Uyemura SA, Lopes JL, Bazon JN, Mingatto FE, Curti C (1998) Effect of naturally occurring flavonoids on lipid peroxidation and membrane permeability transition in mitochondria. Free Radic Biol Med 24:1455–1461CrossRefPubMedGoogle Scholar
  26. Sastre M, Regunathan S, Galea E, Reis DJ (1996) Agmatinase activity in rat brain: a metabolic pathway for the degradation of agmatine. J Neurochem 67:1761–1765PubMedCrossRefGoogle Scholar
  27. Satriano J (2004) Arginine pathways and the inflammatory response: interregulation of nitric oxide and polyamines: review article. Amino Acids 26:321–329CrossRefPubMedGoogle Scholar
  28. Satriano J, Matsufuji S, Murakami Y, Lortie MJ, Schwartz D, Kelly CJ, Hayashi S, Blantz RC (1998) Agmatine suppresses proliferation by frameshift induction of antizyme and attenuation of cellular polyamine levels. J Biol Chem 273:15313–15316CrossRefPubMedGoogle Scholar
  29. Sava IG, Battaglia V, Rossi CA, Salvi M, Toninello A (2006) Free radical scavenging action of the natural polyamine spermine in rat liver mitochondria. Free Radic Biol Med 41:1272–1281CrossRefPubMedGoogle Scholar
  30. Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522CrossRefPubMedGoogle Scholar
  31. Vargiu C, Cabella C, Belliardo S, Cravanzola C, Grillo MA, Colombatto S (1999) Agmatine modulates polyamine content in hepatocytes by inducing spermidine/spermine acetyltransferase. Eur J Biochem 259:933–938CrossRefPubMedGoogle Scholar
  32. Zoratti M, Szabò I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • V. Battaglia
    • 1
  • S. Grancara
    • 1
  • J. Satriano
    • 2
  • S. Saccoccio
    • 3
    • 4
  • E. Agostinelli
    • 3
    • 4
  • A. Toninello
    • 1
  1. 1.Department of Biological ChemistryUniversity of PaduaPaduaItaly
  2. 2.Division of Nephrology-Hypertension, Department of MedicineThe Veterans Administration San Diego Healthcare System, University of CaliforniaSan DiegoUSA
  3. 3.Department of Biochemical SciencesSAPIENZA, University of RomeRomeItaly
  4. 4.CNR, Biology and Molecular Pathology InstitutesRomeItaly

Personalised recommendations