Advertisement

Amino Acids

, Volume 39, Issue 1, pp 11–27 | Cite as

Positron emission tomography imaging of prostate cancer

  • Hao Hong
  • Yin Zhang
  • Jiangtao Sun
  • Weibo Cai
Review Article

Abstract

Prostate cancer (PCa) is the second leading cause of cancer death among men in the United States. Positron emission tomography (PET), a non-invasive, sensitive, and quantitative imaging technique, can facilitate personalized management of PCa patients. There are two critical needs for PET imaging of PCa, early detection of primary lesions and accurate imaging of PCa bone metastasis, the predominant cause of death in PCa. Because the most widely used PET tracer in the clinic, 18F-fluoro-2-deoxy-2-d-glucose (18F-FDG), does not meet these needs, a wide variety of PET tracers have been developed for PCa imaging that span an enormous size range from small molecules to intact antibodies. In this review, we will first summarize small-molecule-based PET tracers for PCa imaging, which measure certain biological events, such as cell membrane metabolism, fatty acid synthesis, and receptor expression. Next, we will discuss radiolabeled amino acid derivatives (e.g. methionine, leucine, tryptophan, and cysteine analogs), which are primarily based on the increased amino acid transport of PCa cells. Peptide-based tracers for PET imaging of PCa, mostly based on the bombesin peptide and its derivatives which bind to the gastrin-releasing peptide receptor, will then be presented in detail. We will also cover radiolabeled antibodies and antibody fragments (e.g. diabodies and minibodies) for PET imaging of PCa, targeting integrin αvβ3, EphA2, the epidermal growth factor receptor, or the prostate stem cell antigen. Lastly, we will identify future directions for the development of novel PET tracers for PCa imaging, which may eventually lead to personalized management of PCa patients.

Keywords

Molecular imaging Prostate cancer Positron emission tomography Peptide Antibody 

Notes

Acknowledgments

The authors acknowledge financial support from the UW School of Medicine and Public Health’s Medical Education and Research Committee through the Wisconsin Partnership Program, the UW Carbone Cancer Center, NCRR 1UL1RR025011, and a Susan G. Komen Postdoctoral Fellowship (to H. Hong).

References

  1. Agrawal S, Patil KP, Dunsmuir WD (2009) Molecular markers in prostate cancer. Part II: potential roles in management. Asian J Androl 11:22–27PubMedCrossRefGoogle Scholar
  2. Albrecht S, Buchegger F, Soloviev D, Zaidi H, Vees H, Khan HG, Keller A, Bischof Delaloye A, Ratib O, Miralbell R (2007) 11C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging 34:185–196PubMedCrossRefGoogle Scholar
  3. Al-Nahhas A, Win Z, Szyszko T, Singh A, Khan S, Rubello D (2007) What can gallium-68 PET add to receptor and molecular imaging? Eur J Nucl Med Mol Imaging 34:1897–1901PubMedCrossRefGoogle Scholar
  4. Ananias HJ, de Jong IJ, Dierckx RA, van de Wiele C, Helfrich W, Elsinga PH (2008) Nuclear imaging of prostate cancer with gastrin-releasing-peptide-receptor targeted radiopharmaceuticals. Curr Pharm Des 14:3033–3047PubMedCrossRefGoogle Scholar
  5. Apolo AB, Pandit-Taskar N, Morris MJ (2008) Novel tracers and their development for the imaging of metastatic prostate cancer. J Nucl Med 49:2031–2041PubMedCrossRefGoogle Scholar
  6. Barren RJ III, Holmes EH, Boynton AL, Misrock SL, Murphy GP (1997) Monoclonal antibody 7E11.C5 staining of viable LNCaP cells. Prostate 30:65–68PubMedCrossRefGoogle Scholar
  7. Bartholdi MF, Wu JM, Pu H, Troncoso P, Eden PA, Feldman RI (1998) In situ hybridization for gastrin-releasing peptide receptor (GRP receptor) expression in prostatic carcinoma. Int J Cancer 79:82–90PubMedCrossRefGoogle Scholar
  8. Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Loidl W, Broinger G, Stoiber F, Fogelman I, Langsteger W (2008) Detection of bone metastases in patients with prostate cancer by F-18 fluorocholine and F-18 fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging 35:1766–1774PubMedCrossRefGoogle Scholar
  9. Biddlecombe GB, Rogers BE, de Visser M, Parry JJ, de Jong M, Erion JL, Lewis JS (2007) Molecular imaging of gastrin-releasing peptide receptor-positive tumors in mice using 64Cu- and 86Y-DOTA-(Pro1, Tyr4)-bombesin(1–14). Bioconjug Chem 18:724–730PubMedCrossRefGoogle Scholar
  10. Bouchelouche K, Oehr P (2008) Positron emission tomography and positron emission tomography/computerized tomography of urological malignancies: an update review. J Urol 179:34–45PubMedCrossRefGoogle Scholar
  11. Brassell SA, Rosner IL, McLeod DG (2005) Update on magnetic resonance imaging, ProstaScint, and novel imaging in prostate cancer. Curr Opin Urol 15:163–166PubMedCrossRefGoogle Scholar
  12. Brissette R, Goldstein NI (2007) The use of phage display peptide libraries for basic and translational research. Methods Mol Biol 383:203–213PubMedCrossRefGoogle Scholar
  13. Cai W, Chen X (2006) Anti-angiogenic cancer therapy based on integrin αvβ3 antagonism. Anticancer Agents Med Chem 6:407–428PubMedCrossRefGoogle Scholar
  14. Cai W, Wu Y, Chen K, Cao Q, Tice DA, Chen X (2006) In vitro and in vivo characterization of 64Cu-labeled Abegrin, a humanized monoclonal antibody against integrin αvβ3. Cancer Res 66:9673–9681PubMedCrossRefGoogle Scholar
  15. Cai W, Chen K, He L, Cao Q, Koong A, Chen X (2007a) Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur J Nucl Med Mol Imaging 34:850–858PubMedCrossRefGoogle Scholar
  16. Cai W, Ebrahimnejad A, Chen K, Cao Q, Li ZB, Tice DA, Chen X (2007b) Quantitative radioimmunoPET imaging of EphA2 in tumor-bearing mice. Eur J Nucl Med Mol Imaging 34:2024–2036PubMedCrossRefGoogle Scholar
  17. Cai W, Olafsen T, Zhang X, Cao Q, Gambhir SS, Williams LE, Wu AM, Chen X (2007c) PET imaging of colorectal cancer in xenograft-bearing mice by use of an 18F-labeled T84.66 anti-carcinoembryonic antigen diabody. J Nucl Med 48:304–310PubMedCrossRefGoogle Scholar
  18. Cai W, Niu G, Chen X (2008a) Imaging of integrins as biomarkers for tumor angiogenesis. Curr Pharm Des 14:2943–2973PubMedCrossRefGoogle Scholar
  19. Cai W, Niu G, Chen X (2008b) Multimodality imaging of the HER-kinase axis in cancer. Eur J Nucl Med Mol Imaging 35:186–208PubMedCrossRefGoogle Scholar
  20. Carter RE, Feldman AR, Coyle JT (1996) Prostate-specific membrane antigen is a hydrolase with substrate and pharmacologic characteristics of a neuropeptidase. Proc Natl Acad Sci USA 93:749–753PubMedCrossRefGoogle Scholar
  21. Cescato R, Maina T, Nock B, Nikolopoulou A, Charalambidis D, Piccand V, Reubi JC (2008) Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J Nucl Med 49:318–326PubMedCrossRefGoogle Scholar
  22. Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, Gaudin PB (1999) Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res 59:3192–3198PubMedGoogle Scholar
  23. Chen X, Park R, Hou Y, Tohme M, Shahinian AH, Bading JR, Conti PS (2004) microPET and autoradiographic imaging of GRP receptor expression with 64Cu-DOTA-[Lys3]bombesin in human prostate adenocarcinoma xenografts. J Nucl Med 45:1390–1397PubMedGoogle Scholar
  24. Cornelio DB, Roesler R, Schwartsmann G (2007) Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. Ann Oncol 18:1457–1466PubMedCrossRefGoogle Scholar
  25. Cury FL, Shenouda G, Souhami L, Duclos M, Faria SL, David M, Verhaegen F, Corns R, Falco T (2006) Ultrasound-based image guided radiotherapy for prostate cancer: comparison of cross-modality and intramodality methods for daily localization during external beam radiotherapy. Int J Radiat Oncol Biol Phys 66:1562–1567PubMedGoogle Scholar
  26. de Jong IJ, Pruim J, Elsinga PH, Jongen MM, Mensink HJ, Vaalburg W (2002) Visualisation of bladder cancer using 11C-choline PET: first clinical experience. Eur J Nucl Med Mol Imaging 29:1283–1288PubMedCrossRefGoogle Scholar
  27. DeGrado TR, Kwee SA, Coel MN, Coleman RE (2007) The impact of urinary excretion of 18F-labeled choline analogs. J Nucl Med 48:1225PubMedCrossRefGoogle Scholar
  28. Dehdashti F, Picus J, Michalski JM, Dence CS, Siegel BA, Katzenellenbogen JA, Welch MJ (2005) Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging 32:344–350PubMedCrossRefGoogle Scholar
  29. Effert PJ, Bares R, Handt S, Wolff JM, Bull U, Jakse G (1996) Metabolic imaging of untreated prostate cancer by positron emission tomography with 18F-labeled deoxyglucose. J Urol 155:994–998PubMedCrossRefGoogle Scholar
  30. Eisenberger MA, Blumenstein BA, Crawford ED, Miller G, McLeod DG, Loehrer PJ, Wilding G, Sears K, Culkin DJ, Thompson IM Jr, Bueschen AJ, Lowe BA (1998) Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. N Engl J Med 339:1036–1042PubMedCrossRefGoogle Scholar
  31. Emonds KM, Swinnen JV, Mortelmans L, Mottaghy FM (2009) Molecular imaging of prostate cancer. Methods 48:193–199PubMedCrossRefGoogle Scholar
  32. Eriksson B, Bergstrom M, Lilja A, Ahlstrom H, Langstrom B, Oberg K (1993) Positron emission tomography (PET) in neuroendocrine gastrointestinal tumors. Acta Oncol 32:189–196PubMedCrossRefGoogle Scholar
  33. Erspamer V, Erpamer GF, Inselvini M (1970) Some pharmacological actions of alytesin and bombesin. J Pharm Pharmacol 22:875–876PubMedGoogle Scholar
  34. Farsad M, Schiavina R, Castellucci P, Nanni C, Corti B, Martorana G, Canini R, Grigioni W, Boschi S, Marengo M, Pettinato C, Salizzoni E, Monetti N, Franchi R, Fanti S (2005) Detection and localization of prostate cancer: correlation of 11C-choline PET/CT with histopathologic step-section analysis. J Nucl Med 46:1642–1649PubMedGoogle Scholar
  35. Farsad M, Schiavina R, Franceschelli A, Sanguedolce F, Castellucci P, Bertaccini A, Brunocilla E, Manferrari F, Concetti S, Garofalo M, Rocca C, Borghesi M, Franchi R, Fanti S, Nanni C, Martorana G (2008) Positron-emission tomography in imaging and staging prostate cancer. Cancer Biomark 4:277–284PubMedGoogle Scholar
  36. Filpula D (2007) Antibody engineering and modification technologies. Biomol Eng 24:201–215PubMedCrossRefGoogle Scholar
  37. Foss CA, Mease RC, Fan H, Wang Y, Ravert HT, Dannals RF, Olszewski RT, Heston WD, Kozikowski AP, Pomper MG (2005) Radiolabeled small-molecule ligands for prostate-specific membrane antigen: in vivo imaging in experimental models of prostate cancer. Clin Cancer Res 11:4022–4028PubMedCrossRefGoogle Scholar
  38. Froidevaux S, Eberle AN (2002) Somatostatin analogs and radiopeptides in cancer therapy. Biopolymers 66:161–183PubMedCrossRefGoogle Scholar
  39. Fuchsjager M, Shukla-Dave A, Akin O, Barentsz J, Hricak H (2008) Prostate cancer imaging. Acta Radiol 49:107–120PubMedCrossRefGoogle Scholar
  40. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693PubMedCrossRefGoogle Scholar
  41. Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42:1S–93SPubMedGoogle Scholar
  42. Garrison JC, Rold TL, Sieckman GL, Figueroa SD, Volkert WA, Jurisson SS, Hoffman TJ (2007) In vivo evaluation and small-animal PET/CT of a prostate cancer mouse model using 64Cu bombesin analogs: side-by-side comparison of the CB-TE2A and DOTA chelation systems. J Nucl Med 48:1327–1337PubMedCrossRefGoogle Scholar
  43. Gasser G, Tjioe L, Graham B, Belousoff MJ, Juran S, Walther M, Kunstler JU, Bergmann R, Stephan H, Spiccia L (2008) Synthesis, copper(II) complexation, 64Cu-labeling, and bioconjugation of a new bis(2-pyridylmethyl) derivative of 1, 4, 7-triazacyclononane. Bioconjug Chem 19:719–730PubMedCrossRefGoogle Scholar
  44. Goodman MM, Devinney JL, Kabalka GW (1994) Microprocessor-controlled open vessel system for the production of no-carrier-added-1-aminocyclobutane-1-carboxylic acid. J Labelled Comp Radiopharm 35:331–333Google Scholar
  45. Gu Z, Thomas G, Yamashiro J, Shintaku IP, Dorey F, Raitano A, Witte ON, Said JW, Loda M, Reiter RE (2000) Prostate stem cell antigen (PSCA) expression increases with high Gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene 19:1288–1296PubMedCrossRefGoogle Scholar
  46. Gugger M, Reubi JC (1999) Gastrin-releasing peptide receptors in non-neoplastic and neoplastic human breast. Am J Pathol 155:2067–2076PubMedGoogle Scholar
  47. Hara T, Kosaka N, Kishi H (2002) Development of 18F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med 43:187–199PubMedGoogle Scholar
  48. Heinlein CA, Chang C (2004) Androgen receptor in prostate cancer. Endocr Rev 25:276–308PubMedCrossRefGoogle Scholar
  49. Hinkle GH, Burgers JK, Neal CE, Texter JH, Kahn D, Williams RD, Maguire R, Rogers B, Olsen JO, Badalament RA (1998) Multicenter radioimmunoscintigraphic evaluation of patients with prostate carcinoma using indium-111 capromab pendetide. Cancer 83:739–747PubMedCrossRefGoogle Scholar
  50. Hricak H, Choyke PL, Eberhardt SC, Leibel SA, Scardino PT (2007) Imaging prostate cancer: a multidisciplinary perspective. Radiology 243:28–53PubMedCrossRefGoogle Scholar
  51. Hubner KF, Krauss S, Washburn LC, Gibbs WD, Holloway EC (1981) Tumor detection with 1-aminocyclopentane and 1-aminocyclobutane C-11-carboxylic acid using positron emission computerized tomography. Clin Nucl Med 6:249–252PubMedCrossRefGoogle Scholar
  52. Husarik DB, Miralbell R, Dubs M, John H, Giger OT, Gelet A, Cservenyak T, Hany TF (2008) Evaluation of [18F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 35:253–263PubMedCrossRefGoogle Scholar
  53. Jani AB, Fox TH, Whitaker D, Schuster DM (2009) Case study of anti-1-amino-3-F-18 fluorocyclobutane-1-carboxylic acid (anti-[F-18] FACBC) to guide prostate cancer radiotherapy target design. Clin Nucl Med 34:279–284PubMedCrossRefGoogle Scholar
  54. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96PubMedCrossRefGoogle Scholar
  55. Jennewein M, Lewis MA, Zhao D, Tsyganov E, Slavine N, He J, Watkins L, Kodibagkar VD, O’Kelly S, Kulkarni P, Antich PP, Hermanne A, Rosch F, Mason RP, Thorpe PE (2008) Vascular imaging of solid tumors in rats with a radioactive arsenic-labeled antibody that binds exposed phosphatidylserine. Clin Cancer Res 14:1377–1385PubMedCrossRefGoogle Scholar
  56. Kalkner KM, Ginman C, Nilsson S, Bergstrom M, Antoni G, Ahlstrom H, Langstrom B, Westlin JE (1997) Positron emission tomography (PET) with 11C–5-hydroxytryptophan (5-HTP) in patients with metastatic hormone-refractory prostatic adenocarcinoma. Nucl Med Biol 24:319–325PubMedCrossRefGoogle Scholar
  57. Kurhanewicz J, Bok R, Nelson SJ, Vigneron DB (2008) Current and potential applications of clinical 13C MR spectroscopy. J Nucl Med 49:341–344PubMedCrossRefGoogle Scholar
  58. Landon LA, Zou J, Deutscher SL (2004) Is phage display technology on target for developing peptide-based cancer drugs? Curr Drug Discov Technol 1:113–132PubMedCrossRefGoogle Scholar
  59. Larson SM, Schoder H (2008) Advances in positron emission tomography applications for urologic cancers. Curr Opin Urol 18:65–70PubMedCrossRefGoogle Scholar
  60. Larson SM, Morris M, Gunther I, Beattie B, Humm JL, Akhurst TA, Finn RD, Erdi Y, Pentlow K, Dyke J, Squire O, Bornmann W, McCarthy T, Welch M, Scher H (2004) Tumor localization of 16β-18F-fluoro-5α-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 45:366–373PubMedGoogle Scholar
  61. Lattouf JB, Srinivasan R, Pinto PA, Linehan WM, Neckers L (2006) Mechanisms of disease: the role of heat-shock protein 90 in genitourinary malignancy. Nat Clin Pract Urol 3:590–601PubMedCrossRefGoogle Scholar
  62. Laverman P, Boerman OC, Corstens FH, Oyen WJ (2002) Fluorinated amino acids for tumour imaging with positron emission tomography. Eur J Nucl Med Mol Imaging 29:681–690PubMedCrossRefGoogle Scholar
  63. Lebl M, Hachmann J (2005) High-throughput peptide synthesis. Methods Mol Biol 298:167–194PubMedGoogle Scholar
  64. Levin CS, Hoffman EJ (1999) Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 44:781–799PubMedCrossRefGoogle Scholar
  65. Lewis JS, Anderson CJ (2007) Radiometal-labeled somatostatin analogs for applications in cancer imaging and therapy. Methods Mol Biol 386:227–240PubMedCrossRefGoogle Scholar
  66. Leyton JV, Olafsen T, Lepin EJ, Hahm S, Bauer KB, Reiter RE, Wu AM (2008) Humanized radioiodinated minibody for imaging of prostate stem cell antigen-expressing tumors. Clin Cancer Res 14:7488–7496PubMedCrossRefGoogle Scholar
  67. Leyton JV, Olafsen T, Sherman MA, Bauer KB, Aghajanian P, Reiter RE, Wu AM (2009) Engineered humanized diabodies for microPET imaging of prostate stem cell antigen-expressing tumors. Protein Eng Des Sel 22:209–216PubMedCrossRefGoogle Scholar
  68. Li ZB, Wu Z, Chen K, Ryu EK, Chen X (2008) 18F-labeled BBN-RGD heterodimer for prostate cancer imaging. J Nucl Med 49:453–461PubMedCrossRefGoogle Scholar
  69. Linden RA, Halpern EJ (2007) Advances in transrectal ultrasound imaging of the prostate. Semin Ultrasound CT MR 28:249–257PubMedCrossRefGoogle Scholar
  70. Liu Z, Niu G, Wang F, Chen X (2009a) 68Ga-labeled NOTA-RGD-BBN peptide for dual integrin and GRPR-targeted tumor imaging. Eur J Nucl Med Mol Imaging EpubGoogle Scholar
  71. Liu Z, Yan Y, Chin FT, Wang F, Chen X (2009b) Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN. J Med Chem 52:425–432PubMedCrossRefGoogle Scholar
  72. Logothetis CJ, Navone NM, Lin SH (2008) Understanding the biology of bone metastases: key to the effective treatment of prostate cancer. Clin Cancer Res 14:1599–1602PubMedCrossRefGoogle Scholar
  73. Macapinlac HA, Humm JL, Akhurst T, Osman I, Pentlow K, Shangde C, Yeung HW, Squire O, Finn RD, Scher HI, Larson SM (1999) Differential metabolism and pharmacokinetics of L-[1–11C]-methionine and 2-[18F] fluoro-2-deoxy-D-glucose (FDG) in androgen independent prostate cancer. Clin Positron Imaging 2:173–181PubMedCrossRefGoogle Scholar
  74. Mammen M, Chio S, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed Engl 37:2755–2794CrossRefGoogle Scholar
  75. Manyak MJ (2008) Indium-111 capromab pendetide in the management of recurrent prostate cancer. Expert Rev Anticancer Ther 8:175–181PubMedCrossRefGoogle Scholar
  76. Markwalder R, Reubi JC (1999) Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res 59:1152–1159PubMedGoogle Scholar
  77. Mathews D, Oz OK (2002) Positron emission tomography in prostate and renal cell carcinoma. Curr Opin Urol 12:381–385PubMedCrossRefGoogle Scholar
  78. McConathy J, Goodman MM (2008) Non-natural amino acids for tumor imaging using positron emission tomography and single photon emission computed tomography. Cancer Metastasis Rev 27:555–573PubMedCrossRefGoogle Scholar
  79. McDonald TJ, Jornvall H, Nilsson G, Vagne M, Ghatei M, Bloom SR, Mutt V (1979) Characterization of a gastrin releasing peptide from porcine non-antral gastric tissue. Biochem Biophys Res Commun 90:227–233PubMedCrossRefGoogle Scholar
  80. Mease RC, Dusich CL, Foss CA, Ravert HT, Dannals RF, Seidel J, Prideaux A, Fox JJ, Sgouros G, Kozikowski AP, Pomper MG (2008) N-[N-[(S)-1, 3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer. Clin Cancer Res 14:3036–3043PubMedCrossRefGoogle Scholar
  81. Mitsuoka K, Miyoshi S, Kato Y, Murakami Y, Utsumi R, Kubo Y, Noda A, Nakamura Y, Nishimura S, Tsuji A (2008) Cancer detection using a PET tracer, 11C-glycylsarcosine, targeted to H +/peptide transporter. J Nucl Med 49:615–622PubMedCrossRefGoogle Scholar
  82. Morris MJ, Akhurst T, Osman I, Nunez R, Macapinlac H, Siedlecki K, Verbel D, Schwartz L, Larson SM, Scher HI (2002) Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer. Urology 59:913–918PubMedCrossRefGoogle Scholar
  83. Morris MJ, Akhurst T, Larson SM, Ditullio M, Chu E, Siedlecki K, Verbel D, Heller G, Kelly WK, Slovin S, Schwartz L, Scher HI (2005) Fluorodeoxyglucose positron emission tomography as an outcome measure for castrate metastatic prostate cancer treated with antimicrotubule chemotherapy. Clin Cancer Res 11:3210–3216PubMedCrossRefGoogle Scholar
  84. Mueller-Lisse UG, Swanson MG, Vigneron DB, Kurhanewicz J (2007) Magnetic resonance spectroscopy in patients with locally confined prostate cancer: association of prostatic citrate and metabolic atrophy with time on hormone deprivation therapy, PSA level, and biopsy Gleason score. Eur Radiol 17:371–378PubMedCrossRefGoogle Scholar
  85. Nanni C, Castellucci P, Farsad M, Rubello D, Fanti S (2007) 11C/18F-choline PET or 11C/18F-acetate PET in prostate cancer: may a choice be recommended? Eur J Nucl Med Mol Imaging 34:1704–1705PubMedCrossRefGoogle Scholar
  86. Nargund V, Al Hashmi D, Kumar P, Gordon S, Otitie U, Ellison D, Carroll M, Baithun S, Britton KE (2005) Imaging with radiolabelled monoclonal antibody (MUJ591) to prostate-specific membrane antigen in staging of clinically localized prostatic carcinoma: comparison with clinical, surgical and histological staging. BJU Int 95:1232–1236PubMedCrossRefGoogle Scholar
  87. Niu G, Cai W, Chen K, Chen X (2008a) Non-invasive PET imaging of EGFR degradation induced by a heat shock protein 90 inhibitor. Mol Imaging Biol 10:99–106PubMedCrossRefGoogle Scholar
  88. Niu G, Cai W, Chen X (2008b) Molecular imaging of human epidermal growth factor receptor 2 (HER-2) expression. Front Biosci 13:790–805PubMedCrossRefGoogle Scholar
  89. Norberg M, Egevad L, Holmberg L, Sparen P, Norlen BJ, Busch C (1997) The sextant protocol for ultrasound-guided core biopsies of the prostate underestimates the presence of cancer. Urology 50:562–566PubMedCrossRefGoogle Scholar
  90. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366:2–16PubMedCrossRefGoogle Scholar
  91. Nunez R, Macapinlac HA, Yeung HW, Akhurst T, Cai S, Osman I, Gonen M, Riedel E, Scher HI, Larson SM (2002) Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med 43:46–55PubMedGoogle Scholar
  92. Nye JA, Schuster DM, Yu W, Camp VM, Goodman MM, Votaw JR (2007) Biodistribution and radiation dosimetry of the synthetic nonmetabolized amino acid analogue anti-18F-FACBC in humans. J Nucl Med 48:1017–1020PubMedCrossRefGoogle Scholar
  93. Oka S, Hattori R, Kurosaki F, Toyama M, Williams LA, Yu W, Votaw JR, Yoshida Y, Goodman MM, Ito O (2007) A preliminary study of anti-1-amino-3–18F-fluorocyclobutyl-1-carboxylic acid for the detection of prostate cancer. J Nucl Med 48:46–55PubMedGoogle Scholar
  94. Okarvi SM (2001) Recent progress in fluorine-18 labelled peptide radiopharmaceuticals. Eur J Nucl Med 28:929–938PubMedCrossRefGoogle Scholar
  95. Olafsen T, Gu Z, Sherman MA, Leyton JV, Witkosky ME, Shively JE, Raubitschek AA, Morrison SL, Wu AM, Reiter RE (2007) Targeting, imaging, and therapy using a humanized antiprostate stem cell antigen (PSCA) antibody. J Immunother 30:396–405PubMedCrossRefGoogle Scholar
  96. Otto SJ, de Koning HJ (2004) Update on screening and early detection of prostate cancer. Curr Opin Urol 14:151–156PubMedCrossRefGoogle Scholar
  97. Oyama N, Ponde DE, Dence C, Kim J, Tai YC, Welch MJ (2004) Monitoring of therapy in androgen-dependent prostate tumor model by measuring tumor proliferation. J Nucl Med 45:519–525PubMedGoogle Scholar
  98. Parry JJ, Kelly TS, Andrews R, Rogers BE (2007) In vitro and in vivo evaluation of 64Cu-labeled DOTA-linker-bombesin(7–14) analogues containing different amino acid linker moieties. Bioconjug Chem 18:1110–1117PubMedCrossRefGoogle Scholar
  99. Pauwels EK, Ribeiro MJ, Stoot JH, McCready VR, Bourguignon M, Maziere B (1998) FDG accumulation and tumor biology. Nucl Med Biol 25:317–322PubMedCrossRefGoogle Scholar
  100. Phelps ME (2000) PET: the merging of biology and imaging into molecular imaging. J Nucl Med 41:661–681PubMedGoogle Scholar
  101. Phelps ME, Hoffman EJ, Huang SC, Ter-Pogossian MM (1975) Effect of positron range on spatial resolution. J Nucl Med 16:649–652PubMedGoogle Scholar
  102. Pinski J, Dorff TB (2005) Prostate cancer metastases to bone: pathophysiology, pain management, and the promise of targeted therapy. Eur J Cancer 41:932–940PubMedCrossRefGoogle Scholar
  103. Plathow C, Weber WA (2008) Tumor cell metabolism imaging. J Nucl Med 49(Suppl 2):43S–63SPubMedCrossRefGoogle Scholar
  104. Ponde DE, Dence CS, Oyama N, Kim J, Tai YC, Laforest R, Siegel BA, Welch MJ (2007) 18F-fluoroacetate: a potential acetate analog for prostate tumor imaging–in vivo evaluation of 18F-fluoroacetate versus 11C-acetate. J Nucl Med 48:420–428PubMedGoogle Scholar
  105. Prasanphanich AF, Nanda PK, Rold TL, Ma L, Lewis MR, Garrison JC, Hoffman TJ, Sieckman GL, Figueroa SD, Smith CJ (2007) [64Cu-NOTA-8-Aoc-BBN(7–14)NH2] targeting vector for positron-emission tomography imaging of gastrin-releasing peptide receptor-expressing tissues. Proc Natl Acad Sci USA 104:12462–12467PubMedCrossRefGoogle Scholar
  106. Price JM, Davidson AJ (1979) Computed tomography in the evaluation of the suspected carcinomatous prostate. Urol Radiol 1:39–42PubMedCrossRefGoogle Scholar
  107. Reader JC (2004) Automation in medicinal chemistry. Curr Top Med Chem 4:671–686PubMedCrossRefGoogle Scholar
  108. Reiter RE, Gu Z, Watabe T, Thomas G, Szigeti K, Davis E, Wahl M, Nisitani S, Yamashiro J, Le Beau MM, Loda M, Witte ON (1998) Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci USA 95:1735–1740PubMedCrossRefGoogle Scholar
  109. Reubi JC (2007) Targeting CCK receptors in human cancers. Curr Top Med Chem 7:1239–1242PubMedCrossRefGoogle Scholar
  110. Reubi JC, Maecke HR (2008) Peptide-based probes for cancer imaging. J Nucl Med 49:1735–1738PubMedCrossRefGoogle Scholar
  111. Rogers BE, Anderson CJ, Connett JM, Guo LW, Edwards WB, Sherman EL, Zinn KR, Welch MJ (1996) Comparison of four bifunctional chelates for radiolabeling monoclonal antibodies with copper radioisotopes: biodistribution and metabolism. Bioconjug Chem 7:511–522PubMedCrossRefGoogle Scholar
  112. Rogers BE, Bigott HM, McCarthy DW, Della Manna D, Kim J, Sharp TL, Welch MJ (2003) MicroPET imaging of a gastrin-releasing peptide receptor-positive tumor in a mouse model of human prostate cancer using a 64Cu-labeled bombesin analogue. Bioconjug Chem 14:756–763PubMedCrossRefGoogle Scholar
  113. Rorvik J, Haukaas S (2001) Magnetic resonance imaging of the prostate. Curr Opin Urol 11:181–188PubMedCrossRefGoogle Scholar
  114. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225PubMedCrossRefGoogle Scholar
  115. Schroder FH, Carter HB, Wolters T, van den Bergh RC, Gosselaar C, Bangma CH, Roobol MJ (2008) Early detection of prostate cancer in 2007. Part 1: PSA and PSA kinetics. Eur Urol 53:468–477PubMedCrossRefGoogle Scholar
  116. Schuster DM, Votaw JR, Nieh PT, Yu W, Nye JA, Master V, Bowman FD, Issa MM, Goodman MM (2007) Initial experience with the radiotracer anti-1-amino-3–18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med 48:56–63PubMedGoogle Scholar
  117. Seltzer MA, Barbaric Z, Belldegrun A, Naitoh J, Dorey F, Phelps ME, Gambhir SS, Hoh CK (1999) Comparison of helical computerized tomography, positron emission tomography and monoclonal antibody scans for evaluation of lymph node metastases in patients with prostate specific antigen relapse after treatment for localized prostate cancer. J Urol 162:1322–1328PubMedCrossRefGoogle Scholar
  118. Seo Y, Franc BL, Hawkins RA, Wong KH, Hasegawa BH (2006) Progress in SPECT/CT imaging of prostate cancer. Technol Cancer Res Treat 5:329–336PubMedGoogle Scholar
  119. Sharkey RM, Cardillo TM, Rossi EA, Chang CH, Karacay H, McBride WJ, Hansen HJ, Horak ID, Goldenberg DM (2005) Signal amplification in molecular imaging by pretargeting a multivalent, bispecific antibody. Nat Med 11:1250–1255PubMedCrossRefGoogle Scholar
  120. Shoup TM, Olson J, Hoffman JM, Votaw J, Eshima D, Eshima L, Camp VM, Stabin M, Votaw D, Goodman MM (1999) Synthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med 40:331–338PubMedGoogle Scholar
  121. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3:81–85PubMedGoogle Scholar
  122. Sodee DB, Nelson AD, Faulhaber PF, Maclennan GT, Resnick MI, Bakale G (2005) Update on fused capromab pendetide imaging of prostate cancer. Clin Prostate Cancer 3:230–238PubMedGoogle Scholar
  123. Solit DB, Scher HI, Rosen N (2003) Hsp90 as a therapeutic target in prostate cancer. Semin Oncol 30:709–716PubMedCrossRefGoogle Scholar
  124. Squillaci E, Manenti G, Mancino S, Carlani M, Di Roma M, Colangelo V, Simonetti G (2005) MR spectroscopy of prostate cancer. Initial clinical experience. J Exp Clin Cancer Res 24:523–530PubMedGoogle Scholar
  125. Sutinen E, Jyrkkio S, Gronroos T, Haaparanta M, Lehikoinen P, Nagren K (2001) Biodistribution of [11C] methylaminoisobutyric acid, a tracer for PET studies on system A amino acid transport in vivo. Eur J Nucl Med 28:847–854PubMedCrossRefGoogle Scholar
  126. Sweat SD, Pacelli A, Murphy GP, Bostwick DG (1998) Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 52:637–640PubMedCrossRefGoogle Scholar
  127. Texter JH Jr, Neal CE (1998) The role of monoclonal antibody in the management of prostate adenocarcinoma. J Urol 160:2393–2395PubMedCrossRefGoogle Scholar
  128. Thompson IM, Ankerst DP (2007) Prostate-specific antigen in the early detection of prostate cancer. CMAJ 176:1853–1858PubMedGoogle Scholar
  129. Tolvanen T, Nagren K, Yu M, Sutinen E, Havu-Auren K, Jyrkkio S, Asola M, Kotoneva E, Nuutila P, Minn H (2006) Human radiation dosimetry of [11C]MeAIB, a new tracer for imaging of system A amino acid transport. Eur J Nucl Med Mol Imaging 33:1178–1184PubMedCrossRefGoogle Scholar
  130. Toth G, Lengyel Z, Balkay L, Salah MA, Tron L, Toth C (2005) Detection of prostate cancer with 11C-methionine positron emission tomography. J Urol 173:66–69 discussion 69PubMedCrossRefGoogle Scholar
  131. Udugamasooriya DG, Dineen SP, Brekken RA, Kodadek T (2008) A peptoid “antibody surrogate” that antagonizes VEGF receptor 2 activity. J Am Chem Soc 130:5744–5752PubMedCrossRefGoogle Scholar
  132. Uttamchandani M, Yao SQ (2008) Peptide microarrays: next generation biochips for detection, diagnostics and high-throughput screening. Curr Pharm Des 14:2428–2438PubMedCrossRefGoogle Scholar
  133. Vavere AL, Lewis JS (2008) Examining the relationship between Cu-ATSM hypoxia selectivity and fatty acid synthase expression in human prostate cancer cell lines. Nucl Med Biol 35:273–279PubMedCrossRefGoogle Scholar
  134. Vavere AL, Kridel SJ, Wheeler FB, Lewis JS (2008) 1–11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer. J Nucl Med 49:327–334PubMedCrossRefGoogle Scholar
  135. Weiner RE, Thakur ML (2005) Radiolabeled peptides in oncology: role in diagnosis and treatment. BioDrugs 19:145–163PubMedCrossRefGoogle Scholar
  136. Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23:1137–1146PubMedCrossRefGoogle Scholar
  137. Yang YS, Zhang X, Xiong Z, Chen X (2006) Comparative in vitro and in vivo evaluation of two 64Cu-labeled bombesin analogs in a mouse model of human prostate adenocarcinoma. Nucl Med Biol 33:371–380PubMedCrossRefGoogle Scholar
  138. Zanzonico PB, Finn R, Pentlow KS, Erdi Y, Beattie B, Akhurst T, Squire O, Morris M, Scher H, McCarthy T, Welch M, Larson SM, Humm JL (2004) PET-based radiation dosimetry in man of 18F-fluorodihydrotestosterone, a new radiotracer for imaging prostate cancer. J Nucl Med 45:1966–1971PubMedGoogle Scholar
  139. Zhang X, Cai W, Cao F, Schreibmann E, Wu Y, Wu JC, Xing L, Chen X (2006a) 18F-labeled bombesin analogs for targeting GRP receptor-expressing prostate cancer. J Nucl Med 47:492–501PubMedGoogle Scholar
  140. Zhang X, Xiong Z, Wu Y, Cai W, Tseng JR, Gambhir SS, Chen X (2006b) Quantitative PET imaging of tumor integrin αvβ3 expression with 18F-FRGD2. J Nucl Med 47:113–121PubMedGoogle Scholar
  141. Zhang H, Schuhmacher J, Waser B, Wild D, Eisenhut M, Reubi JC, Maecke HR (2007) DOTA-PESIN, a DOTA-conjugated bombesin derivative designed for the imaging and targeted radionuclide treatment of bombesin receptor-positive tumours. Eur J Nucl Med Mol Imaging 34:1198–1208PubMedCrossRefGoogle Scholar
  142. Zhuang H, Yu JQ, Alavi A (2005) Applications of fluorodeoxyglucose-PET imaging in the detection of infection and inflammation and other benign disorders. Radiol Clin North Am 43:121–134PubMedCrossRefGoogle Scholar
  143. Zitzmann S, Mier W, Schad A, Kinscherf R, Askoxylakis V, Kramer S, Altmann A, Eisenhut M, Haberkorn U (2005) A new prostate carcinoma binding peptide (DUP-1) for tumor imaging and therapy. Clin Cancer Res 11:139–146PubMedGoogle Scholar
  144. Zwanziger D, Khan IU, Neundorf I, Sieger S, Lehmann L, Friebe M, Dinkelborg L, Beck-Sickinger AG (2008) Novel chemically modified analogues of neuropeptide Y for tumor targeting. Bioconjug Chem 19:1430–1438PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Departments of Radiology and Medical Physics, School of Medicine and Public HealthUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.University of Wisconsin Carbone Cancer CenterMadisonUSA

Personalised recommendations