Advertisement

Amino Acids

, Volume 38, Issue 4, pp 1155–1164 | Cite as

Inhibitors of N α-acetyl-l-ornithine deacetylase: synthesis, characterization and analysis of their inhibitory potency

  • J. HlaváčekEmail author
  • J. Pícha
  • V. Vaněk
  • J. Jiráček
  • J. Slaninová
  • V. Fučík
  • M. Buděšínský
  • D. Gilner
  • R. C. Holz
Original Article

Abstract

A series of N α-acyl (alkyl)- and N α-alkoxycarbonyl-derivatives of l- and d-ornithine were prepared, characterized, and analyzed for their potency toward the bacterial enzyme N α-acetyl-l-ornithine deacetylase (ArgE). ArgE catalyzes the conversion of N α-acetyl-l-ornithine to l-ornithine in the fifth step of the biosynthetic pathway for arginine, a necessary step for bacterial growth. Most of the compounds tested provided IC50 values in the μM range toward ArgE, indicating that they are moderately strong inhibitors. N α-chloroacetyl-l-ornithine (1g) was the best inhibitor tested toward ArgE providing an IC50 value of 85 μM while N α-trifluoroacetyl-l-ornithine (1f), N α-ethoxycarbonyl-l-ornithine (2b), and N α-acetyl-d-ornithine (1a) weakly inhibited ArgE activity providing IC50 values between 200 and 410 μM. Weak inhibitory potency toward Bacillus subtilis-168 for N α-acetyl-d-ornithine (1a) and N α-fluoro- (1f), N α-chloro- (1g), N α-dichloro- (1h), and N α-trichloroacetyl-ornithine (1i) was also observed. These data correlate well with the IC50 values determined for ArgE, suggesting that these compounds might be capable of getting across the cell membrane and that ArgE is likely the bacterial enzymatic target.

Keywords

ArgE inhibitors Acetylornithine derivatives Synthesis Inhibitory and antibacterial activity 

Abbreviations

AA

Amino acid analysis

ACN

Acetonitrile

ArgE

Nα-acetyl-l-ornithine deacetylase

Boc

tert-Butoxycarbonyl

(Boc)2O

Di-(tert-butylcarbonate) anhydride

DIC

NN-Diisopropylcarbodiimide

DCM

Dichloromethane

DIEA

NN-Diisopropylethylamine

DMAP

4-(Dimethylamino)pyridine

DMF

NN-Dimethylformamide

ESI MS

Electro spray ionization mass spectrometry

Et

Ethyl

Fmoc

[(Fluoren-1-yl-methoxy]carbonyl; 9-fluorenylmethoxycarbonyl

HEPES

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

HOBt

1-Hydroxybenzotriazole

IPTG

Isopropyl-β-d-thiogalactopyranoside

Me

Methyl

NAO

N-Acetyl-l-ornithine

SDS-PAGE

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TFA

Trifluoroacetic acid

TIS

Tri-isopropylsilane

Tricine

N-tris[hydroxymethyl]methylglycine

Z

Benzyloxycarbonyl

Notes

Acknowledgments

This research was supported by the Research Project Z4 055 0506, the Grant Agency of the Czech Academy of Sciences (No. IAA400550614) and the National Science Foundation (CHE-0652981, RCH).

References

  1. Bradshaw R, Yi E (2002) Methionine aminopeptidases and angiogenesis. Essays Biochem 38:65–78PubMedGoogle Scholar
  2. Brenner M, Huber W (1953) Herstellung von α-Aminosäureestern durch Alkoholyse der Methylester. Helv Chim Acta 36:1109–1115CrossRefGoogle Scholar
  3. CDC (1995) Hospital infection control practices advisory committee’s recommendations for preventing the spread of vancomycin resistance. MMWR Morb Mortal Wkly Rep 44:1–13Google Scholar
  4. Cunin R, Glansdorff N, Pierard A, Stalon V (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50:314–352PubMedGoogle Scholar
  5. Daiyasua H, Osakaa K, Ishinob Y, Toha H (2001) Expansion of the zinc metallo-hydrolase family of the l-lactamase fold. FEBS Lett 503:1–6CrossRefGoogle Scholar
  6. Davis RH (1986) Compartmental and regulatory mechanisms in the arginine pathways of Neurospora Crassa and Saccharomyces Cerevisiae. Microbiol Rev 50:280–313PubMedGoogle Scholar
  7. Dismukes GC (1996) Manganese enzymes with binuclear active sites. Chem Rev 96:2909–2926CrossRefPubMedGoogle Scholar
  8. Durrum EL (1950) A microelectrophoretic and microionophoretic technique. J Am Chem Soc 72:2943–2948Google Scholar
  9. Girodeau J-M, Agouridas C, Masson MRP, LeGoffic F (1986) The lysine pathway as a target for a new genera of synthetic antibacterial antibiotics. J Med Chem 29:1023–1030CrossRefPubMedGoogle Scholar
  10. Hancock REW (1997) Peptide antibiotics. Lancet 349:418–422CrossRefPubMedGoogle Scholar
  11. Harris BZ, Singer M (1998) Identification and characterization of the Myxococcus xanthus Arge gene. J Bacteriol 180:6412–6414PubMedGoogle Scholar
  12. Hlaváček J, Poduška K, Šorm F, Sláma K (1976) Peptidic analogues of insect juvenile hormone containing urethane type protecting groups. Collect Czech Chem Commun 41:317–324Google Scholar
  13. Hlaváček J, Zyka D, Pícha J, Jiráček J, Čeřovský V, Slaninová J, Fučík V, Holz RC (2007) Synthesis and characterization of potential inhibitors of dapE and argE enzymes as new antimicrobial agents. In: Wilce J (Ed) Proceedings of 4th international peptide symposium in conjuction with 7th Australian peptide conference and 2nd Asia-Pacific international peptide symposium, Cairns Queensland Australia 2007, www.peptideoz.org, N_317
  14. Holz RC, Bzymek K, Swierczek SI (2003) Co-catalytic metallopeptidases as pharmaceutical targets. Curr Opin Chem Biol 7:197–206CrossRefPubMedGoogle Scholar
  15. Javid-Majd F, Blanchard JS (2000) Mechanistic analysis of the argE-encoded N-acetylornithine deacetylase. Biochemistry 39:1285–1293CrossRefPubMedGoogle Scholar
  16. Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34:595–598CrossRefPubMedGoogle Scholar
  17. Ledwidge R, Blanchard JS (1999) The dual biosynthetic capability of N-acetylornithine aminotransferase in arginine and lysine biosynthesis. Biochemistry 38:3019–3024CrossRefPubMedGoogle Scholar
  18. Lequin O, Ladram A, Chabbert L, Bruston F, Convert O, Vanhoye D, Chassaing G, Nicolas P, Amiche M (2006) Dermaseptin S9, an α-helical antimicrobial peptide with a hydrophobic core and cationic termini. Biochemistry 45:468–480CrossRefPubMedGoogle Scholar
  19. Levy SB (1998) The challenge of antibiotic resistance. Sci Am 278:46–53CrossRefPubMedGoogle Scholar
  20. Lipscomb WN, Sträter N (1996) Recent advances in zinc enzymology. Chem Rev 96:2375–2433CrossRefPubMedGoogle Scholar
  21. McGregor W, Swierczek SI, Bennett B, Holz RC (2005) The argE-encoded N-Acetyl-l-ornithine deacetylase from Escherichia coli contains a dinuclear metallo-active site. J Am Chem Soc 38:14100–14107CrossRefGoogle Scholar
  22. McGregor W, Bennett B, Holz RC (2007) Kinetic and spectroscopic characterization of the manganese(II)-loaded argE-encoded N-acetyl-l-ornithine deacetylase from Escherichia coli. J Biol Inorg Chem 12:603–613CrossRefPubMedGoogle Scholar
  23. Meinnel T, Schmitt E, Mechulam Y, Blanquet S (1992) Structural and biochemical characterization of the Escherichia coli argE gene product. J Bacteriol 174:2323–2331PubMedGoogle Scholar
  24. Mendes MA, De Sousa BM, Marques MR, Palma MS (2004) Structural and biochemici characterization of the novel peptides from the venom of the neotropical social vamp Agelaia palpes palpes. Toxicon 44:67–74CrossRefPubMedGoogle Scholar
  25. Meyer J-P, Davis P, Lee KB, Porreca F, Yamamura HI, Hruby VJ (1995) Synthesis using a Fmoc-based strategy and biological activities of some reduced peptide bond pseudopeptide analogues of dynorphin A. J Med Chem 38:3462–3468CrossRefPubMedGoogle Scholar
  26. Moroder L, Hallett A, Wünsch E, Keller O, Wersin G (1976) Di-tert-butyldicarbonat- ein vorteihaftes Reagenz zur Einfuhrung der tert-Butoxycarbonyl-Schutzgruppe. Hoppe-Seylers Z Physiol Chem 357:1651–1653PubMedGoogle Scholar
  27. Nemecek S (1997) Beating Bacteria. New ways to fend off antibiotic-resistant pathogens. Sci Am 276:38–39CrossRefPubMedGoogle Scholar
  28. Oren Z, Shai Y (1997) Selective lysis of bacteria but not mammalian cells by dia-stereoisomers of mellitin: structure function study. Biochemistry 36:1826–1835CrossRefPubMedGoogle Scholar
  29. Teuber M (1999) Spread of antibiotic resistance with food-borne pathogens. Cell Mol Life Sci 56:755–763CrossRefPubMedGoogle Scholar
  30. Tsai JH, Takaoka LR, Powell NA, Nowick JS (2002) Synthesis of amino acid ester isocyanates: methyl (S)-2-isocyanato-3-phenylpropanoate. Organic Syntheses 78:220–221; Coll 10:544–555 (2004)Google Scholar
  31. Van de Casteele M, Demarez M, Legrain C, Glansdorff N, Pierard A (1990) Pathways of arginine biosynthesis in extreme thermophilic archae- and eubacteria. J Gen Microbiol 136:1177–1183Google Scholar
  32. Velasco AM, Leguina JI, Lazcano A (2002) Molecular evolution of the lysine biosynthetic pathways. J Mol Evol 55:445–459CrossRefPubMedGoogle Scholar
  33. Vogel HJ, MacLellan WL (1970) Acetylornithinase (E. coli). Methods Enzymol 17A:265–269CrossRefGoogle Scholar
  34. Wilcox DE (1996) Binuclear metallohydrolases. Chem Rev 96:2435–2458CrossRefPubMedGoogle Scholar
  35. Xu Y, Liang Z, Legrain C, Ruger HL, Glansdorff N (2000) Evolution of arginine biosynthesis in the bacterial domain: novel gene–enzyme relationships from psychrophilic Moritella strains (Vibrionaceae) and evolutionary significance of N-alpha-acetyl ornithinase. J Bacteriol 182:1609–1615CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • J. Hlaváček
    • 1
    Email author
  • J. Pícha
    • 1
  • V. Vaněk
    • 1
  • J. Jiráček
    • 1
  • J. Slaninová
    • 1
  • V. Fučík
    • 1
  • M. Buděšínský
    • 1
  • D. Gilner
    • 2
    • 3
  • R. C. Holz
    • 2
  1. 1.Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic
  2. 2.Loyola University ChicagoChicagoUSA
  3. 3.Silesian University of TechnologyGliwicePoland

Personalised recommendations