Amino Acids

, Volume 38, Issue 4, pp 1011–1020 | Cite as

Interactions of α1–proteinase inhibitor with small ligands of therapeutic potential: binding with retinoic acid

  • Elena Karnaukhova
Original Article


Human α1–proteinase inhibitor (α1–PI), also known as α1-antitrypsin, is the most abundant plasma serine protease inhibitor (serpin). It is best recognized for inhibition of neutrophil elastase. The α1–PI interactions with non-protease ligands were investigated mainly in regards to those molecules that may block the aggregation of α1–PI Z mutant. The objective of this study was to evaluate the potential of α1–PI to bind small non-peptide ligands of pharmaceutical interest that may attain additional properties to currently available α1–PI therapeutic preparations. Among putative ligands of bio-medical interest examined in this study, all-trans retinoic acid (RA) was selected due to its recently proposed roles in the lungs, and as an efficient optical probe. The results of this study, including absorption spectroscopy data, fluorescence quenching and the protein-induced chirality of the visible circular dichroism strongly suggest that α1–PI does bind RA in vitro to non-covalent complexes of up to two moles of RA per one mole of the protein. To our knowledge, this is the first report that provides experimental evidence of the α1–PI potential towards bi-functional drugs via a combination with RA, or potentially other molecules of pharmaceutical interest, that ultimately, may enhance currently available α1–PI therapies.


Alpha-1 proteinase inhibitor Antitrypsin Retinoic acid 



The author is grateful to Drs. Abdu Alayash, Wayne Hicks and Dominador Manalo for helpful discussions and critical reading of the manuscript.


  1. Belloni PN, Garvin L, Mao CP, Bailey-Healy I, Leaffer D (2000) Effects of all-trans-retinoic acid in promoting alveolar repair. Chest 117:235S–241S. doi: 10.1378/chest.117.5_suppl_1.235S CrossRefPubMedGoogle Scholar
  2. Brown WM (2006) rAAt (dermatological) Arriva/ProMetic. Curr Opin Mol Ther 8(1):69–75PubMedGoogle Scholar
  3. Chang YP, Mahadeva R, Chang WS, Shukla A, Dafforn TR, Chu YH (2006) Identification of a 4-mer peptide inhibitor that effectively blocks the polymerization of pathogenic Z α1-antitrypsin. Am J Respir Cell Mol Biol 35:540–548. doi: 10.1165/rcmb.2005-0207OC CrossRefPubMedGoogle Scholar
  4. Chang YP, Mahadeva R, Chang WS, Lin SC, Chu YH (2008) Small-molecule peptides inhibit Z alpha(1)-antitrypsin polymerization. J Cell Mol Med. doi: 10.1111/j.1582-4934.2008.00608.x
  5. Chase T Jr, Shaw E (1967) p-Nitrophenyl-p′-guanidinobenzoate HCl: a new active site titrant for trypsin. Biochem Biophys Res Commun 29:508–514. doi: 10.1016/0006-291X(67)90513-X CrossRefPubMedGoogle Scholar
  6. Cho SJ, George CLS, Snyder JM, Acarregui MJ (2005) Retinoic acid and erythropoietin maintain alveolar development in mice treated with an angiogenesis inhibitor. Am J Respir Cell Mol Biol 33:622–628. doi: 10.1165/rcmb.2005-0050OC CrossRefPubMedGoogle Scholar
  7. Chow MK, Devlin GL, Bottomley SP (2001) Osmolytes as modulators of conformational changes in serpins. Biol Chem 382:1593–1599. doi: 10.1515/BC.2001.194 CrossRefPubMedGoogle Scholar
  8. Congote LF (2007) Serpin A1 and CD91 as host instruments against HIV-1 infection: are extracellular antiviral peptides acting as intracellular messengers? Virus Res 125(2):119–134. doi: 10.1016/j.virusres.2006.12.018 CrossRefPubMedGoogle Scholar
  9. Conley B, Egorin M, Sridhara R, Finley R, Hemady R, Wu S, Tait NS, Van Echo DA (1997) Phase I clinical trial of all-trans-retinoic acid with correlation of its pharmaco-kinetics and pharmaco-dynamics. Cancer Chemother Pharmacol 39:291–299. doi: 10.1007/s002800050575 CrossRefPubMedGoogle Scholar
  10. Cowden DI, Fisher GE, Weeks RL (2005) A pilot study comparing the purity, functionality and isoform composition of alpha-1-proteinase inhibitor (human) products. Curr Med Res Opin 21(6):877–883. doi: 10.1185/030079905X46395 CrossRefPubMedGoogle Scholar
  11. Crystal RG (ed) (1996) Alpha-1-antitrypsin deficiency. Biology pathogenesis clinical manifestations therapy. Marcel Dekker, New York, p 449Google Scholar
  12. Devlin GL, Bottomley SP (2005) A protein family under ‘stress’—serpin stability, folding and misfolding. Front Biosci 10:288–299. doi: 10.2741/1528 CrossRefPubMedGoogle Scholar
  13. Devlin GL, Parfrey H, Tew DJ, Lomas DA, Bottomley SP (2001) Prevention of polymerization of M and Z α1-antitrypsin (α1-AT) with trimethylamine N-oxide. Implications for the treatment of α1-AT deficiency. Am J Respir Cell Mol Biol 24:727–732PubMedGoogle Scholar
  14. Devlin GL, Chow MKM, Howlett GJ, Bottomley SP (2002) Acid denaturation of α1-anti-trypsin: characterization of a novel mechanism of serpin polymerization. J Mol Biol 324:859–870. doi: 10.1016/S0022-2836(02)01088-4 CrossRefPubMedGoogle Scholar
  15. Edelhoch H (1967) Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6:1948–1954. doi: 10.1021/bi00859a010 CrossRefPubMedGoogle Scholar
  16. Elliott PR, Pei XY, Dafforn TR, Lomas DA (2000) Topography of a 2.0 Å structure of α1-antitrypsin reveals targets for rational drug design to prevent conformational disease. Protein Sci 9:1274–1281. doi: 10.1110/ps.9.7.1274 CrossRefPubMedGoogle Scholar
  17. Gooptu B, Lomas DA (2008) Polymers and inflammation: disease mechanisms of the serpinopathies. J Exp Med 205(7):1529–1534. doi: 10.1084/jem.20072080 CrossRefPubMedGoogle Scholar
  18. Gooptu B, Lomas DA (2009) Conformational pathology of the serpins: themes, variations, and therapeutic strategies. Annu Rev Biochem. doi: 10.1146/annurev.biochem.78.082107.133320
  19. Guidas LJ, Sporn MB, Roberts AB (1994) Cellular biology and biochemistry of retinoids. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids: biology, chemistry and medicine, 2nd edn. Raven Press, New YorkGoogle Scholar
  20. Harada N, Nakanishi K (1983) Circular dichroic spectroscopy—exciton coupling. In: Organic stereochemistry. University Science Books, Mill ValleyGoogle Scholar
  21. Haugland RP (1996) Handbook of fluorescent probes and research chemicals, 6th edn. In: Spence MTZ (ed) Molecular probes, EugeneGoogle Scholar
  22. Hind M, Maden M (2004) Retinoic acid induces alveolar regeneration in the adult mouse lung. Eur Respir J 23:20–27. doi: 10.1183/09031936.03.00119103 CrossRefPubMedGoogle Scholar
  23. Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L, Gu LJ, Wang ZY (1988) Use of all-trans retinoic acid in the treatment of acute promyelocytic leukaemia. Blood 72:567–572PubMedGoogle Scholar
  24. Huntington JA (2006) Shape-shifting serpins—advantages of a mobile mechanism. Trends Biochem Sci 31:427–435. doi: 10.1016/j.tibs.2006.06.005 CrossRefPubMedGoogle Scholar
  25. Huntington JA, Liu W (2009) Structural insights into the multiple functions of protein C inhibitor. Cell Mol Life Sci 66:113–121. doi: 10.1007/s00018-008-8371-0 CrossRefPubMedGoogle Scholar
  26. Huntington JA, Read RJ, Carrell RW (2000) Structure of a serpin-protease complex shows inhibition by deformation. Nature 407:923–926. doi: 10.1038/35038119 CrossRefPubMedGoogle Scholar
  27. Huntington JA, Kjellberg M, Stenflo J (2003) Crystal structure of protein C inhibitor provides insights into hormone binding and heparin activation. Structure 11:205–215. doi: 10.1016/S0969-2126(02)00944-9 CrossRefPubMedGoogle Scholar
  28. Janciauskiene S, Eriksson S (1993) In vitro complex formation between cholesterol and α1–proteinase inhibitor. FEBS 326:269–272. doi: 10.1016/0014-5793(93)81306-K CrossRefGoogle Scholar
  29. Janciauskiene S, Eriksson S (1994) The interaction of hydrophobic bile acids with the α1–proteinase inhibitor. FEBS Lett 343:141–145. doi: 10.1016/0014-5793(94)80306-4 CrossRefPubMedGoogle Scholar
  30. Janciauskiene SM, Nita IM, Stevens T (2007) α1-Antitrypsin, old dog, new tricks. α1-Antitrypsin exerts in vitro anti-inflammatory activity in human monocytes by elevating cAMP. J Biol Chem 282(12):8573–8582. doi: 10.1074/jbc.M607976200 CrossRefPubMedGoogle Scholar
  31. Jerabek I, Zechmeister-Machhart M, Binder BR, Geiger M (2001) Binding of retinoic acid by the inhibitory serpin protein C inhibitor. Eur J Biochem 268:5989–5996. doi: 10.1046/j.0014-2956.2001.02560.x CrossRefPubMedGoogle Scholar
  32. Karnaukhova E (2007) Interactions of human serum albumin with retinoic acid, retinal and retinyl acetate. Biochem Pharmacol 73:901–910. doi: 10.1016/j.bcp.2006.11.023 CrossRefPubMedGoogle Scholar
  33. Karnaukhova E, Ophir Y, Golding B (2006) Recombinant human alpha-1–proteinase inhibitor towards therapeutic use. Amino Acids 30:317–332. doi: 10.1007/s00726-005-0324-4 CrossRefPubMedGoogle Scholar
  34. Kim S-J, Woo J-R, Seo EJ, Yu M-H, Ryu S-E (2001) A 2.1 Å resolution structure of an uncleaved α1-antitrypsin shows variability of the reactive center and other loops. J Mol Biol 306:109–119. doi: 10.1006/jmbi.2000.4357 CrossRefPubMedGoogle Scholar
  35. Knaupp AS, Bottomley SP (2009) Serpin polymerization and its role in disease—the molecular basis of α1-antitrypsin deficiency. IUBMB Life 61(1):1–5. doi: 10.1002/iub.127 CrossRefPubMedGoogle Scholar
  36. Kolarich D, Turecek PL, Weber A, Mitterer A, Graninger M, Matthiessen P, Nicolaes GAF, Altmann F, Schwarz HP (2006) Biochemical, molecular characterization and glycoproteomic analyses of α1–proteinase inhibitor products used for replacement therapy. Transfusion 46(11):1959–1977. doi: 10.1111/j.1537-2995.2006.01004.x CrossRefPubMedGoogle Scholar
  37. Lane MA, Bailey SJ (2005) Role of retinoid signalling in the adult brain. Prog Neurobiol 75:275–293. doi: 10.1016/j.pneurobio.2005.03.002 CrossRefPubMedGoogle Scholar
  38. Lawless MW, Mankan AK, Gray SG, Norris S (2008) Endoplasmic reticulum stress—a double edged sword for Z alpha-1 antitrypsin deficiency hepatoxicity. Int J Biochem Cell Biol 40(8):1403–1414. doi: 10.1016/j.biocel.2008.02.008 CrossRefPubMedGoogle Scholar
  39. Lee C, Maeng JS, Kocher JP, Lee B, Yu MH (2001) Cavities of α1-antitrypsin that play structural and functional role. Protein Sci 10:1446–1453. doi: 10.1110/ps.840101 CrossRefPubMedGoogle Scholar
  40. Lomas D (2005) Molecular mousetraps, α1-antitrypsin deficiency and the serpinopathies. Clin Med JRCPL 5:249–257Google Scholar
  41. Maden M, Hind M (2004) Retinoic acid in alveolar development, maintenance and regeneration. Philos Trans R Soc Lond B Biol Sci 359:799–808. doi: 10.1098/rstb.2004.1470 CrossRefPubMedGoogle Scholar
  42. Mahadeva R, Dafforn TR, Carrell RW, Lomas DA (2002) 6-mer peptide selectively anneals to a pathogenic serpin conformation and blocks polymerization. Implications for the prevention of Z alpha(1)-antitrypsin-related cirrhosis. J Biol Chem 277:6771–6774. doi: 10.1074/jbc.C100722200 CrossRefPubMedGoogle Scholar
  43. Maiti TK, Ghosh KS, Debnath J, Dasgupta S (2006) Binding of all trans retinoic acid to human serum albumin: fluorescence FT-IR and circular dichroism studies. Int J Biol Macromol 38:197–202. doi: 10.1016/j.ijbiomac.2006.02.015 CrossRefPubMedGoogle Scholar
  44. Mallya M, Phillips RL, Saldanha SA, Gooptu B, Brown SC, Termine DJ, Shirvani AM, Wu Y, Sifers RN, Abagyan R, Lomas DA (2007) Small molecules block the polymerization of Z α1-Antitrypsin and increase the clearance of intracellular aggregates. J Med Chem 50:5357–5363. doi: 10.1021/jm070687z CrossRefPubMedGoogle Scholar
  45. Mao JT, Goldin JG, Dermand J, Ibrahim G, Brown MS, Emerick A, McNitt-Gray MF, Gjertson DW, Estrada F, Tashkin DP, Roth MD (2002) A pilot study of all-trans-retinoic acid for the treatment of human emphysema. Am J Respir Crit Care Med 165:718–723PubMedGoogle Scholar
  46. Massaro GD, Massaro D (1996) Postnatal treatment with retinoic acid increases the number of pulmonary alveoli in rats. Am J Physiol 270:L305–L310PubMedGoogle Scholar
  47. Massaro GD, Massaro D (1997) Retinoic acid treatment abrogates elastase induced pulmonary emphysema in rats. Nat Med 3:675–677. doi: 10.1038/nm0697-675 CrossRefPubMedGoogle Scholar
  48. Mazereeuw-Hautier J, Cope J, Ong C, Green A, Hovnanian A, Harper JI (2006) Topical recombinant alpha1-antitrypsin: a potential treatment for Netherton syndrome? Arch Dermatol 142:396–398. doi: 10.1001/archderm.142.3.396 CrossRefPubMedGoogle Scholar
  49. Noy N (1992) The ionization behavior of retinoic acid in aqueous environments and bound to serum albumin. Biochim Biophys Acta 1106:152–158Google Scholar
  50. Noy N (1999) Physical-chemical properties and action of retinoids. In: Nau H, Blaner WS (eds) Retinoids: the biochemical and molecular basis of vitamin A and retinoid action, vol 139. Springer, New York, pp 3–29Google Scholar
  51. Parfrey H, Mahadeva R, Ravenhill NA, Zhou A, Dafforn TR, Foreman RC, Lomas DA (2003) Targeting a surface cavity of alpha 1-antitrypsin to prevent conformational disease. J Biol Chem 278(35):33060–33066. doi: 10.1074/jbc.M302646200 CrossRefPubMedGoogle Scholar
  52. Park SH, Gray WC, Hernandez I, Jacobs M, Ord RA, Sutharalingam M, Smith RG, Van Echo DA, Wu S, Conley BA (2000) Phase I trial of all-trans retinoic acid in patients with treated head and neck squamous carcinoma. Clin Cancer Res 6:847–854PubMedGoogle Scholar
  53. Patston PA, Church FC, Olson ST (2004) Serpin–ligand interactions. Methods 32:93–109. doi: 10.1016/S1046-2023(03)00201-9 CrossRefPubMedGoogle Scholar
  54. Pearce MC, Morton CJ, Feil SC, Hansen G, Adams JJ, Parker MW, Bottomley SP (2008) Preventing serpin aggregation: the molecular mechanism of citrate action upon antitrypsin unfolding. Protein Sci 17:2127–2133. doi: 10.1110/ps.037234.108 CrossRefPubMedGoogle Scholar
  55. Petrache I, Fijalkowska I, Zhen L, Medler TR, Brown E, Cruz P, Choe KH, Taraseviciene-Stewart L, Scerbavicius R, Shapiro L, Zhang B, Song S, Hicklin D, Voelkel NF, Flotte T, Tuder RM (2006) A novel antiapoptotic role for α1-antitrypsin in the prevention of pulmonary emphysema. Am J Respir Crit Care Med 173:1222–1228. doi: 10.1164/rccm.200512-1842OC CrossRefPubMedGoogle Scholar
  56. Roth MD, Connett JE, D’Armiento JM, Foronjy RF, MD; Friedman PJ, Goldin JG, Louis, Mao TA, Muindi JT Jr, O’Connor GT, Ramsdell JW, Ries AL, Scharf SM, Schluger NW, Sciurba FC, Skeans MA, Walter RE, Wendt CH, Wise RA (2006) Feasibility of retinoids for the treatment of emphysema study. Chest 130:1334–1345. doi: 10.1378/chest.130.5.1334
  57. Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PG, Irving JA, Lomas DA, Luke CJ, Moyer RW, Pemberton PA, Remold-O’Donnell E, Salvesen GS, Travis J, Whisstock JC (2001) The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 276:33293–33296. doi: 10.1074/jbc.R100016200 CrossRefPubMedGoogle Scholar
  58. Teague SJ (2003) Implications of protein flexibility for drug discovery. Nat Rev Drug Discov 2(7):527–541. doi: 10.1038/nrd1129 CrossRefPubMedGoogle Scholar
  59. Treat J, Friedland D, Luginbuhl W, Meehan L, Gorman G, Miller W Jr, Bavaria J, Kaiser L (1996) Phase II trial of all-trans retinoic acid in metastatic non-small cell lung cancer. Cancer Invest 14:415–420. doi: 10.3109/07357909609018898 CrossRefPubMedGoogle Scholar
  60. Weber A, Engelmaier A, Owen MC, Schwarz HP, Turecek PL (2007) Convenient high- resolution isoelectric focusing (IEF) method for the separation of alpha1- proteinase inhibitor (A1PI) isoforms in A1PI concentrates. J Pharm Biomed Anal 45:107–111. doi: 10.1016/j.jpba.2007.06.006 CrossRefPubMedGoogle Scholar
  61. Whisstock JC, Bottomley SP (2006) Molecular gymnastics: serpin structure, folding and misfolding. Curr Opin Struct Biol 16:761–768. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  62. Xie MX, Xu XY, Wang YD (2005) Interaction between hesperetin and human serum albumin revealed by spectroscopic methods. Biochim Biophys Acta 1724:215–224PubMedGoogle Scholar
  63. Zhang B, Lu Y, Campbell-Thompson M, Spencer T, Wasserfall C, Atkinson M, Song S (2007) α1-Antitrypsin protects β-cells from apoptosis. Diabetes 56:1316–1323. doi: 10.2337/db06-1273 CrossRefPubMedGoogle Scholar
  64. Zhou A, Stein PE, Huntington JA, Sivasothy P, Lomas DA, Carrell RW (2004) How small peptides block and reverse serpin polymerisation. J Mol Biol 342:931–941. doi: 10.1016/j.jmb.2004.07.078 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and ResearchFood and Drug AdministrationBethesdaUSA

Personalised recommendations