Amino Acids

, Volume 38, Issue 3, pp 679–690

Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region

Review Article


Fourier transform spectroscopy in the mid-infrared (400–5,000 cm−1) (FT-IR) is being recognized as a powerful tool for analyzing chemical composition of food, with special concern to molecular architecture of food proteins. Unlike other spectroscopic techniques, it provides high-quality spectra with very small amount of protein, in various environments irrespective of the molecular mass. The fraction of peptide bonds in α-helical, β-pleated sheet, turns and aperiodic conformations can be accurately estimated by analysis of the amide I band (1,600–1,700 cm−1) in the mid-IR region. In addition, FT-IR measurement of secondary structure highlights the mechanism of protein aggregation and stability, making this technique of strategic importance in the food proteomic field. Examples of applications of FT-IR spectroscopy in the study of structural features of food proteins critical of nutritional and technological performance are discussed.


FT-IR Infrared spectroscopy Food proteins Secondary structure 


  1. Akkas SB, Severcan M, Yilmaz O, Severcan F (2007) Effect of lipoic acid supplementation on rat brain tissue: an FTIR spectroscopic and neural network study. Food Chem 105:1281–1288. doi:10.1016/j.foodchem.2007.03.015 CrossRefGoogle Scholar
  2. Al-Jowder O, Kemsley EK, Wilson R (1997) Mid-infrared spectroscopy and authenticity problems in selected meats: a feasibility study. Food Chem 59:195–201. doi:10.1016/S0308-8146(96)00289-0 CrossRefGoogle Scholar
  3. Arrondo JLR, Goni FM (1999) Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog Biophys Mol Biol 72:367–405. doi:10.1016/S0079-6107(99)00007-3 CrossRefPubMedGoogle Scholar
  4. Arrondo JLR, Young NM, Mantsch HH (1988) The solution structure of concanavalin A probed by FT-IR spectroscopy. Biochim Biophys Acta 952:261–268PubMedGoogle Scholar
  5. Arrondo JLR, Muga A, Castresana J, Goñi FM (1993) Quantitative studies of the structure of proteins in solution by Fourier-transform infrared- spectroscopy. Prog Biophys Mol Biol 59:23–56. doi:10.1016/0079-6107(93)90006-6 CrossRefPubMedGoogle Scholar
  6. Bao XL, Lv Y, Yang BC, Ren CG, Guo ST (2008) A study of the soluble complexes formed during calcium binding by soybean protein hydrolysates. J Food Sci 73:C117–C121. doi:10.1111/j.1750-3841.2008.00673.x CrossRefPubMedGoogle Scholar
  7. Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta 1767:1073–1101. doi:10.1016/j.bbabio.2007.06.004 CrossRefPubMedGoogle Scholar
  8. Bhattacharjee C, Saha S, Biswas A, Kundu M, Ghosh L, Das KP (2005) Structural changes of β-lactoglobulin during thermal unfolding and refolding—an FT-IR and circular dichroism study. Protein J 24:27–35. doi:10.1007/s10930-004-0603-z CrossRefPubMedGoogle Scholar
  9. Bocker U, Kohler A, Aursand IG, Ofstad R (2008) Effects of brine salting with regard to raw material variation of Atlantic salmon (Salmo salar) muscle investigated by Fourier transform infrared. J Agric Food Chem 56:5129–5137. doi:10.1021/jf703678z CrossRefPubMedGoogle Scholar
  10. Burnett GR, Rigby NM, Mills ENC, Belton PS, Fido RJ, Tatham AS (2002) Characterization of the emulsification properties of 2S albumins from sunflower seed. J Colloid Interface Sci 247:177–185. doi:10.1006/jcis.2001.8093 CrossRefPubMedGoogle Scholar
  11. Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25:469–487. doi:10.1002/bip.360250307 CrossRefPubMedGoogle Scholar
  12. Cai S, Singh BR (1999) Identification of β-turn and random coil amide III infrared bands for secondary structure estimation of proteins. Biophys Chem 80:7–20. doi:10.1016/S0301-4622(99)00060-5 CrossRefPubMedGoogle Scholar
  13. Carbonaro M (2006a) Application of two-dimensional electrophoresis for monitoring gastrointestinal digestion of milk. Amino Acids 31:485–488. doi:10.1007/s00726-006-0367-1 CrossRefPubMedGoogle Scholar
  14. Carbonaro M (2006b) 7S globulins from Phaseolus vulgaris L.: impact of structural aspects on the nutritional quality. Biosci Biotechnol Biochem 70:2620–2626. doi:10.1271/bbb.60203 CrossRefPubMedGoogle Scholar
  15. Carbonaro M, Nucara A (2007) Application of FT-IR spectroscopy in the assessment of changes in the secondary structure of food proteins taking legumes as a model. Amino Acids 33:45–46Google Scholar
  16. Carbonaro M, Grant G, Cappelloni M (2005) Heat-induced denaturation impairs digestibility of legume (Phaseolus vulgaris L. and Vicia faba L.) 7S and 11S globulins in the small intestine of rat. J Sci Food Agric 85:65–72. doi:10.1002/jsfa.1940 CrossRefGoogle Scholar
  17. Carbonaro M, Maselli P, Dore P, Nucara A (2008) Application of Fourier transform infrared spectroscopy to legume seed flour analysis. Food Chem 108:361–368. doi:10.1016/j.foodchem.2007.10.045 CrossRefGoogle Scholar
  18. Chehin R, Iloro I, Marcos MJ, Villar E, Shnyrov VL, Arrondo JLR (1999) Thermal and pH-induced conformational changes of a β-sheet protein monitored by infrared spectroscopy. Biochemistry 38:1525–1530. doi:10.1021/bi981567j CrossRefPubMedGoogle Scholar
  19. Coleman PB (1993) Practical sampling techniques for infrared analysis. CRC Press, Boca RatonGoogle Scholar
  20. Dev SB, Keller JT, Rha CK (1988) Secondary structure of 11 S globulin in aqueous solution investigated by FT-IR derivative spectroscopy. Biochim Biophys Acta 957:272–280PubMedGoogle Scholar
  21. Dogan A, Siyakus G, Severcan F (2007) FTIR spectroscopic characterization of irradiated hazelnut (Corylus avellana L.). Food Chem 100:1106–1114. doi:10.1016/j.foodchem.2005.11.017 CrossRefGoogle Scholar
  22. Dollinger G, Eisenstein L, Shuo-Liang L, Nakanishi K, Termini J (1986) Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts regenerated with deuterated tyrosine. Biochemistry 25:6524–6533. doi:10.1021/bi00369a028 CrossRefPubMedGoogle Scholar
  23. Dousseau F, Pezolet M (1990) Determination of the secondary structure content of protein in aqueous solutions from their amide-I and amide-II bands: comparison between classical and partial least-square methods. Biochemistry 29:8771–8779. doi:10.1021/bi00489a038 CrossRefPubMedGoogle Scholar
  24. Dousseau F, Therrien M, Pezolet M (1989) On the spectral subtraction of water from FT-IR spectra of aqueous solution of proteins. Appl Spectrosc 43:538–542. doi:10.1366/0003702894202814 CrossRefGoogle Scholar
  25. Dziuba J, Niklewicz M, Iwaniak A, Darewicz M, Minkiewicz P (2005) Structural properties of proteolytic-accessible bioactive fragments of selected animal proteins. Polymers 50:424–428Google Scholar
  26. Ellepola SW, Siu MC, Ma CY (2005) Conformational study of globulin from rice (Oryza sativa) seeds by Fourier-transform infrared spectroscopy. Int J Biol Macromol 37:12–20. doi:10.1016/j.ijbiomac.2005.07.008 CrossRefPubMedGoogle Scholar
  27. Fabian H, Mantsch HH, Schultz CP (1999) Two dimensional IR correlation spectroscopy: sequential events in the unfolding process in the lambda-CroV55C repressor protein. Proc Natl Acad Sci USA 96:13153–13158. doi:10.1073/pnas.96.23.13153 CrossRefPubMedGoogle Scholar
  28. Fang Y, Dalgleish DG (1997) Conformation of β-lactoglobulin studied by FTIR: effect of pH, temperature, and adsorption to the oil–water interface. J Colloid Interface Sci 96:292–298. doi:10.1006/jcis.1997.5191 CrossRefGoogle Scholar
  29. Fang Y, Dalgleish DG (1998) The conformation of α-lactalbumin as a function of pH, heat treatment and adsorption at hydrophobic surfaces studied by FTIR. Food Hydrocoll 12:121–126. doi:10.1016/S0268-005X(98)00003-4 CrossRefGoogle Scholar
  30. Fu F-N, DeOliveira DB, William R, Trumble R, Hemanta K, Sarkar HK, Singh BR (1994) Secondary structure estimation of proteins using the amide III region of Fourier transform infrared spectroscopy: application to analyze calcium-binding-induced structural changes in calsequestrin. Appl Spectrosc 48:1432–1441. doi:10.1366/0003702944028065 CrossRefGoogle Scholar
  31. Gianibelli MC, Larroque OR, MacRitchie F, Wringley CW (2001) Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chem 78:635–646. doi:10.1094/CCHEM.2001.78.6.635 CrossRefGoogle Scholar
  32. Goormaghtigh E, Cabiaux V, Ruysschaert J-M (1994) Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy III. Secondary structures. Subcell Biochem 23:405–450PubMedGoogle Scholar
  33. Haris PI, Severcan F (1999) FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J Mol Catal, B Enzym 7:207–221. doi:10.1016/S1381-1177(99)00030-2 CrossRefGoogle Scholar
  34. Harrick NJ (ed) (1967) Internal reflection spectroscopy. Wiley, New YorkGoogle Scholar
  35. Hashimoto A, Kameoka T (2008) Application of infrared spectroscopy to biochemical, food, and agricultural processes. Appl Spectrosc Rev 43:416–451. doi:10.1080/05704920802108131 CrossRefGoogle Scholar
  36. Ishiguro T, Ono T, Wada T, Tsukamoto C, Kono Y (2006) Changes in soybean phytate content as a result of field growing conditions and influence on tofu texture. Biosci Biotechnol Biochem 70:874–880. doi:10.1271/bbb.70.874 CrossRefPubMedGoogle Scholar
  37. Jackson M, Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein-structure. Crit Rev Biochem Mol Biol 30:95–120. doi:10.3109/10409239509085140 CrossRefPubMedGoogle Scholar
  38. Kauppinen JK, Moffatt DJ, Mantsch HH, Cameron DG (1981) Fourier self deconvolution: a method for resolving intrinsically overlapped bands. Appl Spectrosc 35:271–276. doi:10.1366/0003702814732634 CrossRefGoogle Scholar
  39. Kher A, Udabage P, McKinnon I, McNaughton D, Augustin MA (2007) FTIR investigation of spray-dried milk protein concentrate powders. Vib Spectrosc 44:375–381. doi:10.1016/j.vibspec.2007.03.006 CrossRefGoogle Scholar
  40. Kirschner C, Ofstad R, Skarpeid HJ, Host V, Kohler A (2004) Monitoring of denaturation processes in aged beef loin by Fourier transform infrared microspectroscopy. J Agric Food Chem 52:3920–3929. doi:10.1021/jf0306136 CrossRefPubMedGoogle Scholar
  41. Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structure. Acta Biochim Biophys Sin (Shanghai) 39:549–559. doi:10.1111/j.1745-7270.2007.00320.x CrossRefGoogle Scholar
  42. Kubelka P (1948) New contributions to the optics of intensely light-scattering materials. Part I J Optic Soc Am 38:448–457. doi:10.1364/JOSA.38.000448 CrossRefGoogle Scholar
  43. Kubelka P (1954) New contributions to the optics of intensely light-scattering materials. Part II J Optic Soc Am 44:330–335. doi:10.1364/JOSA.44.000330 CrossRefGoogle Scholar
  44. Kumosinski TF, Unruh JJ (1996) Quantitation of the global secondary structure of globular proteins by FTIR spectroscopy: comparison with X-ray crystallographic structure. Talanta 43:199–219. doi:10.1016/0039-9140(95)01726-7 CrossRefPubMedGoogle Scholar
  45. Lee DC, Haris PI, Chapman D, Mitchell RC (1990) Determination of protein secondary structure using factor analysis of infrared spectra. Biochemistry 29:9185–9193. doi:10.1021/bi00491a012 CrossRefPubMedGoogle Scholar
  46. Lee S-H, Lefèvre T, Subirade M, Paquin P (2007) Changes and roles of secondary structures of whey protein for the formation of protein membrane at soy oil/water interface under high-pressure homogenization. J Agric Food Chem 55:10924–10931. doi:10.1021/jf0726076 CrossRefPubMedGoogle Scholar
  47. Lefevre T, Subirade M (2000) Molecular differences in the formation and structure of fine-stranded and particulate β-lactoglobulin. Biopolymers 54:578–586. doi:10.1002/1097-0282(200012)54:7<578::AID-BIP100>3.0.CO;2-2 CrossRefPubMedGoogle Scholar
  48. Li-Chan ECY (2007) Vibrational spectroscopy applied to the study of milk proteins. Dairy Sci Technol 87:443–458. doi:10.1051/lait:2007023 CrossRefGoogle Scholar
  49. Lorenz-Fonfria VA, Padros E (2008) Method for the estimation of the mean Lorentzian bandwidth in spectra composed of an unknown number of highly overlapped bands. Appl Spectrosc 62:689–700. doi:10.1366/000370208784658129 CrossRefPubMedGoogle Scholar
  50. Ma CY, Rout MK, Mock WY (2001) Study of oat globulin conformation by Fourier transform infrared spectroscopy. J Agric Food Chem 49:3328–3334. doi:10.1021/jf010053f CrossRefPubMedGoogle Scholar
  51. Mangavel C, Barbot J, Popineau Y, Gueguen J (2001) Evolution of wheat gliadins conformation during film formation: a Fourier transform infrared study. J Agric Food Chem 49:867–872. doi:10.1021/jf0009899 CrossRefPubMedGoogle Scholar
  52. Mantsch HH, Chapman D (eds) (1996) Infrared spectroscopy of biomolecules. Wiley-Liss, New YorkGoogle Scholar
  53. Martin-del-Campo ST, Picque D, Cosio-Ramirez R, Corrieu G (2007) Middle infrared spectroscopy characterization of ripening stages of Camembert-type cheeses. Int Dairy J 17:835–845CrossRefGoogle Scholar
  54. Maurer GA, Ozen BF, Maurer LJ, Nielsen SS (2004) Analysis of hard-to-cook red and black common beans using Fourier transform infrared spectroscopy. J Agric Food Chem 52:1470–1477. doi:10.1021/jf035083s CrossRefPubMedGoogle Scholar
  55. Meersman F, Smeller L, Heremans K (2002) Comparative Fourier transform infrared spectroscopy study of cold-, pressure-, and heat-induced unfolding and aggregation of myoglobin. Biophys J 82:2635–2644. doi:10.1016/S0006-3495(02)75605-1 CrossRefPubMedGoogle Scholar
  56. Meng G-T, Ma C-Y (2001) Fourier-transform infrared spectroscopy study of globulin from Phaseolus angularis (red bean). Int J Biol Macromol 29:287–294. doi:10.1016/S0141-8130(01)00178-7 CrossRefPubMedGoogle Scholar
  57. Mills ENC, Marigheto NA, Wellner N, Fairhurst SA, Jenkins JA, Mann R, Belton PS (2003) Thermally induced structural changes in glycinin, the 11S globulin of soya bean (Glycine max)—an in situ spectroscopic study. Biochim Biophys Acta 1648:105–111PubMedGoogle Scholar
  58. Murayama K, Tomida M (2004) Heat-induced secondary structure and conformation change of bovine serum albumin investigated by Fourier transform infrared spectroscopy. Biochemistry 43:11526–11532Google Scholar
  59. Naumann D (2001) FT-infrared and FT-Raman spectroscopy in biomedical research. In: Gremlich H-U, Yan B (eds) Infrared and Raman spectroscopy of biological materials. Marcel Dekker Inc, New York, pp 323–378Google Scholar
  60. Norris KH, Barness RF (1976) Infrared reflectance analysis of nutritive value of feedstuffs. In: Fonnesbeck PV, Harris LE, Kearl LC (eds) Feed composition, animal nutrient requirements and computerization of diets. Proceedings of the 1st international symposium. Utah State University, Logan, UT, pp 237–241Google Scholar
  61. Pelton JT, McLean LR (2000) Spectroscopic methods for analysis of protein secondary structure. Anal Biochem 277:167–176. doi:10.1006/abio.1999.4320 CrossRefPubMedGoogle Scholar
  62. Pietrzak LN, Miller SS (2005) Microchemical structure of soybean seeds revealed in situ by ultraspatially resolved synchrotron Fourier transformed infrared microspectroscopy. J Agric Food Chem 53:9304–9311. doi:10.1021/jf050608x CrossRefPubMedGoogle Scholar
  63. Popineau Y, Bonenfant S, Cornec M, Pezolet M (1994) A study by infrared-spectroscopy of the conformation of gluten proteins differing in their gliadin and glutenin composition. J Cereal Sci 20:15–22. doi:10.1006/jcrs.1994.1040 CrossRefGoogle Scholar
  64. Reeves JBIII (1994) Near- versus mid-infrared diffuse reflectance spectroscopy for the quantitative determination of the composition of forages and byproducts. J Near Infrared Spectrosc 2:49–57CrossRefGoogle Scholar
  65. Reeves JBIII, Zapf CM (1998) Mid-infrared diffuse reflectance spectroscopy for discriminant analysis of food ingredients. J Agric Food Chem 46:3614–3622. doi:10.1021/jf9801926 CrossRefGoogle Scholar
  66. Reid LM, O’Donnell CP, Downey G (2006) Recent technological advances for the determination of food authenticity. Trends Food Sci Technol 17:344–353. doi:10.1016/j.tifs.2006.01.006 CrossRefGoogle Scholar
  67. Roeges NPG (1994) A guide to the complete interpretation of infrared spectra of organic structures. New York, WileyGoogle Scholar
  68. Sawyer L, Holt C (1993) The secondary structure of milk proteins and their biological function. J Dairy Sci 76:3062–3078PubMedCrossRefGoogle Scholar
  69. Secundo F, Guerrieri N (2005) ATR-FT/IR study on the interactions between gliadins and dextrin and their effects on protein secondary structure. J Agric Food Chem 53:1757–1764. doi:10.1021/jf049061x CrossRefPubMedGoogle Scholar
  70. Severcan M, Haris PI, Severcan F (2004) Using artificially generated spectral data to improve protein secondary structure prediction from Fourier transform infrared spectra of proteins. Anal Biochem 332:238–244. doi:10.1016/j.ab.2004.06.030 CrossRefPubMedGoogle Scholar
  71. Shewry PR, Halford NG (2002) Cereals seed storage proteins: structure, properties and role in grain utilization. J Exp Bot 53:947–958. doi:10.1093/jexbot/53.370.947 CrossRefPubMedGoogle Scholar
  72. Torii H, Tasumi M (1992) Model calculations on the amide-I infrared bands of globular proteins. J Chem Phys 96:3379–3387. doi:10.1063/1.461939 CrossRefGoogle Scholar
  73. Toyran N, Turan B, Severcan F (2007) Selenium alters the lipid content and protein profile of rat heart: an FTIR microspectroscopic study. Arch Biochem Biophys 458:184–193. doi:10.1016/ CrossRefPubMedGoogle Scholar
  74. Troullier A, Reinstädler D, Dupont Y, Naumann D, Forge V (2000) Transient non-native secondary structures during the refolding of α-lactalbumin detected by infrared spectroscopy. Nat Struct Biol 7:78–86. doi:10.1038/71286 CrossRefPubMedGoogle Scholar
  75. Van Boxtel EL, Van Beers MCM, Koppelman SJ, Van den Broek LAM, Gruppen H (2006) Allergen Ara h 1 occurs in peanuts as a large oligomer rather than as a trimer. J Agric Food Chem 54:7180–7186. doi:10.1021/jf061433+ CrossRefPubMedGoogle Scholar
  76. Venyaminov SY, Kalnin NN (1990) Quantitative IR spectrophotometry of peptide compounds in water (H2O) solution. Spectral parameters of amino acid residue absorption bands. Biopolymers 30:1243–1257. doi:10.1002/bip.360301309 CrossRefPubMedGoogle Scholar
  77. Wellner N, Belton PS, Tatham AS (1996) Fourier transform IR spectroscopic study of hydration-induced structure in the solid state of ω-gliadins. Biochem J 319:741–747PubMedGoogle Scholar
  78. Wu Z, Bertram HC, Bocker U, Ofstad R, Kohler A (2007) Myowater dynamics and protein secondary structural changes as affected by heating rate in three pork qualities: a combined FT-IR microspectroscopic and 1H NMR relaxometry study. J Agric Food Chem 55:3990–3997. doi:10.1021/jf070019m CrossRefPubMedGoogle Scholar
  79. Yu P (2004) Application of advanced synchroton radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy to animal nutrition and feed science: a novel approach. Br J Nutr 92:869–885. doi:10.1079/BJN20041298 CrossRefPubMedGoogle Scholar
  80. Yu P, McKinnon JJ, Christensen CR, Christensen DA (2004) Using synchroton transmission FTIR microspectroscopy as a rapid, direct and non-destructive analytical technique to reveal molecular microstructural-chemical features within tissue in grain barley. J Agric Food Chem 52:1484–1494. doi:10.1021/jf035065a CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Istituto Nazionale di Ricerca per gli Alimenti e la NutrizioneRomeItaly
  2. 2.Dipartimento di FisicaUniversità di Roma “La Sapienza”RomeItaly

Personalised recommendations