Amino Acids

, Volume 37, Issue 3, pp 443–458

Signal transduction and adaptive regulation through bacterial two-component systems: the Escherichia coli AtoSC paradigm

Review Article

Abstract

Adaptive signal transduction within microbial cells involves a multi-faceted regulated phosphotransfer mechanism that comprises structural rearrangements of sensor histidine kinases upon ligand-binding and phosphorylation-induced conformational changes in response regulators of versatile two-component systems (TCS), arisen early in bacterial evolution. In Escherichia coli, cross-talk between the AtoS histidine kinase and the AtoC response regulator, forming the AtoSC TCS, through His → Asp phosphotransfer, activates AtoC directly to induce atoDAEB operon expression, thus modulating diverse fundamental cellular processes such as short-chain fatty acid catabolism, poly-(R)-3-hydroxybutyrate biosynthesis and chemotaxis. Among the inducers hitherto identified, acetoacetate is the classical activator. The AtoSC TCS functional modulation by polyamines, histamine and Ca2+, as well as the role of AtoC as transcriptional regulator, add new promising perspectives in the physiological significance and potential pharmacological exploitation of this TCS in cell proliferation, bacteria–host interactions, chemotaxis, and adaptation.

Keywords

Antizyme AtoSC two-component system Escherichia coli Histamine Poly-(R)-3-hydroxybutyrate Polyamines 

Abbreviations

Az

Antizyme

cPHB

Complexed poly-(R)-3-hydroxybutyrate

HAMP

Linker domain in HKs, adenyl cyclases, methyl-accepting proteins and phosphatases

HK

Histidine kinase

IHF

Integration host factor

LPS

Lipopolysaccharides

ODC

Ornithine decarboxylase

RR

Response regulator

SCFA

Short-chain fatty acid

TCS

Two-component system

References

  1. Akdis CA, Simons FE (2006) Histamine receptors are hot in immunopharmacology. Eur J Pharmacol 533:69–76PubMedCrossRefGoogle Scholar
  2. Alm E, Huang K, Arkin A (2006) The evolution of two-component systems in bacteria reveals different strategies for niche adaptation. PLoS Comput Biol 2:e143PubMedCrossRefGoogle Scholar
  3. Anagnostopoulos CG, Kyriakidis DA (1996) Regulation of the Escherichia coli biosynthetic ornithine decarboxylase activity by phosphorylation and nucleotides. Biochim Biophys Acta 1297:228–234PubMedGoogle Scholar
  4. Barrios H, Valderrama B, Morett E (1999) Compilation and analysis of sigma54-dependent promoter sequences. Nucleic Acids Res 27:4305–4313PubMedCrossRefGoogle Scholar
  5. Berlyn MKB (1998) Linkage map of Escherichia coli K-12, edition 10: the traditional map. Microbiol Mol Biol Rev 62:814–984PubMedGoogle Scholar
  6. Blattner FR, Plunkett GIII, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462PubMedCrossRefGoogle Scholar
  7. Bourret RB, Stock AM (2002) Molecular information processing: lessons from bacterial chemotaxis. J Biol Chem 277:9625–9628PubMedCrossRefGoogle Scholar
  8. Canellakis ES, Viceps-Madore D, Kyriakidis DA, Heller JS (1979) The regulation and function of ornithine decarboxylase and of the polyamines. Curr Top Cell Regul 15:155–202PubMedGoogle Scholar
  9. Canellakis ES, Kyriakidis DA, Heller JS, Pawlak JW (1981) The complexity of regulation of ornithine decarboxylase. Med Biol 59:279–285PubMedGoogle Scholar
  10. Canellakis ES, Paterakis AA, Huang SC, Panagiotidis CA, Kyriakidis DA (1993) Identification, cloning, and nucleotide sequencing of the ornithine decarboxylase antizyme gene of Escherichia coli. Proc Natl Acad Sci USA 90:7129–7133PubMedCrossRefGoogle Scholar
  11. Chaves P, Correa-Fiz F, Melgarejo E, Urdiales JL, Medina MA, Sánchez-Jiménez F (2007) Development of an expression macroarray for amine metabolism-related genes. Amino Acids 33:315–322PubMedCrossRefGoogle Scholar
  12. Chen YT, Chang HY, Lu CL, Peng HL (2004) Evolutionary analysis of the two-component systems in Pseudomonas aeruginosa PAO1. J Mol Evol 59:725–737PubMedCrossRefGoogle Scholar
  13. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867PubMedCrossRefGoogle Scholar
  14. Das S, Reusch RN (1999) Gating kinetics of E. coli poly-3-hydroxybutyrate/polyphosphate channels in planar bilayer membranes. J Membr Biol 170:135–145PubMedCrossRefGoogle Scholar
  15. de Been M, Francke C, Moezelaar R, Abee T, Siezen RJ (2006) Comparative analysis of two-component signal transduction systems of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis. Microbiology 152:3035–3048PubMedCrossRefGoogle Scholar
  16. De Carlo S, Chen B, Hoover TR, Kondrashkina E, Nogales E, Nixon BT (2006) The structural basis for regulated assembly and function of the transcriptional activator NtrC. Genes Dev 20:1485–1495PubMedCrossRefGoogle Scholar
  17. dela Vega AL, Delcour AH (1996) Polyamines decrease Escherichia coli outer membrane permeability. J Bacteriol 178:3715–3721PubMedGoogle Scholar
  18. Dortay H, Gruhn N, Pfeifer A, Schwerdtner M, Schmülling T, Heyl A (2008) Toward an interaction map of the two-component signaling pathway of Arabidopsis thaliana. J Proteome Res 7:3649–3660PubMedCrossRefGoogle Scholar
  19. Du L, Jiao F, Chu J, Jin G, Chen M, Wu P (2007) The two-component signal system in rice (Oryza sativa L.): a genome-wide study of cytokinin signal perception and transduction. Genomics 89:697–707PubMedCrossRefGoogle Scholar
  20. Dutta R, Qin L, Inouye M (1999) Histidine kinases: diversity of domain organization. Mol Microbiol 34:633–640PubMedCrossRefGoogle Scholar
  21. Filippou PS, Lioliou EE, Panagiotidis CA, Athanassopoulos CM, Garnelis T, Papaioannou D, Kyriakidis DA (2007) Effect of polyamines and synthetic polyamine-analogues on the expression of antizyme (AtoC) and its regulatory genes. BMC Biochem 8:1PubMedCrossRefGoogle Scholar
  22. Filippou PS, Kasemian LD, Panagiotidis CA, Kyriakidis DA (2008) Functional characterization of the histidine kinase of the E. coli two-component signal transduction system AtoSC. Biochim Biophys Acta 1780:1023–1031PubMedGoogle Scholar
  23. Flashner Y, Weiss DS, Keener J, Kustu S (1995) Constitutive forms of the enhancer-binding protein NtrC: evidence that essential oligomerization determinants lie in the central activation domain. J Mol Biol 249:700–713PubMedCrossRefGoogle Scholar
  24. Fong WF, Heller JS, Canellakis ES (1976) The appearance of an ornithine decarboxylase inhibitory protein upon the addition of putrescine to cell cultures. Biochim Biophys Acta 428:456–465PubMedGoogle Scholar
  25. Fu W, Yang F, Kang X, Zhang X, Li Y, Xia B, Jin C (2007) First structure of the polymyxin resistance proteins. Biochem Biophys Res Commun 361:1033–1037PubMedCrossRefGoogle Scholar
  26. Galperin MY (2006) Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 188:4169–4182PubMedCrossRefGoogle Scholar
  27. Gao R, Mack TR, Stock AM (2007) Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem Sci 32:225–234PubMedCrossRefGoogle Scholar
  28. Grebe TW, Stock JB (1999) The histidine protein kinase superfamily. Adv Microb Physiol 41:139–227PubMedCrossRefGoogle Scholar
  29. Grigoroudis AI, Panagiotidis CA, Lioliou EE, Vlassi M, Kyriakidis DA (2007) Molecular modeling and functional analysis of the AtoS-AtoC two-component signal transduction system of Escherichia coli. Biochim Biophys Acta 1770:1248–1258PubMedGoogle Scholar
  30. Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519PubMedCrossRefGoogle Scholar
  31. Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T (2006) Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol 2: 2006.0007Google Scholar
  32. Heller JS, Fong WF, Canellakis ES (1976) Induction of a protein inhibitor of ornithine decarboxylase by the end products of its reaction. Proc Natl Acad Sci USA 73:1858–1862PubMedCrossRefGoogle Scholar
  33. Heller JS, Kyriakidis DA, Canellakis ES (1983) Purification and properties of the antizymes of Escherichia coli to ornithine decarboxylase. Biochim Biophys Acta 760:154–162PubMedGoogle Scholar
  34. Hirakawa H, Nishino K, Hirata T, Yamaguchi A (2003) Comprehensive studies of drug resistance mediated by overexpression of response regulators of two-component signal transduction systems in Escherichia coli. J Bacteriol 185:1851–1856PubMedCrossRefGoogle Scholar
  35. Hoang HH, Gurich N, González JE (2008) Regulation of motility by the ExpR/Sin quorum-sensing system in Sinorhizobium meliloti. J Bacteriol 190:861–871PubMedCrossRefGoogle Scholar
  36. Hoch JA (2000) Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3:165–170PubMedCrossRefGoogle Scholar
  37. Hong HJ, Hutchings MI, Hill LM, Buttner MJ (2005) The role of the novel Fem protein VanK in vancomycin resistance in Streptomyces coelicolor. J Biol Chem 280:13055–13061PubMedCrossRefGoogle Scholar
  38. Hori Y, Nihei Y, Kurokawa Y, Kuramasu A, Makabe-Kobayashi Y, Terui T, Doi H, Satomi S, Sakurai E, Nagy A, Watanabe T, Ohtsu H (2002) Accelerated clearance of Escherichia coli in experimental peritonitis of histamine-deficient mice. J Immunol 169:1978–1983PubMedGoogle Scholar
  39. Huang R, Reusch RN (1996) Poly(3-hydroxybutyrate) is associated with specific proteins in the cytoplasm and membranes of Escherichia coli. J Biol Chem 271:22196–22202PubMedCrossRefGoogle Scholar
  40. Igarashi K, Kashiwagi K (2000) Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun 271:559–564PubMedCrossRefGoogle Scholar
  41. Itoh T, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Kasai H, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Seki Y, Horiuchi T (1996) A 460-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 40.1–50.0 min region on the linkage map. DNA Res 3:379–392PubMedCrossRefGoogle Scholar
  42. Ivanov IP, Atkins JF (2007) Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation. Nucleic Acids Res 35:1842–1858PubMedCrossRefGoogle Scholar
  43. Ivanov IP, Gesteland RF, Atkins JF (1998) Does antizyme exist in Escherichia coli? Mol Microbiol 29:1521–1522PubMedCrossRefGoogle Scholar
  44. Jenkins LS, Nunn WD (1987a) Genetic and molecular characterization of the genes involved in short-chain fatty acid degradation in Escherichia coli: the ato system. J Bacteriol 169:42–52PubMedGoogle Scholar
  45. Jenkins LS, Nunn WD (1987b) Regulation of the ato operon by the atoC gene in Escherichia coli. J Bacteriol 169:2096–2102PubMedGoogle Scholar
  46. Jones HE, Holland IB, Jacq A, Wall T, Campbell AK (2003) Escherichia coli lacking the AcrAB multidrug efflux pump also lacks nonproteinaceous, PHB-polyphosphate Ca2+ channels in the membrane. Biochim Biophys Acta 1612:90–97PubMedCrossRefGoogle Scholar
  47. Katsu T, Yoshimura S, Fujita Y (1984) Increases in permeability of Escherichia coli outer membrane induced by polycations. FEBS Lett 166:175–178PubMedCrossRefGoogle Scholar
  48. Kim D, Forst S (2001) Genomic analysis of the histidine kinase family in bacteria and archaea. Microbiology 147:1197–1212PubMedGoogle Scholar
  49. Kofoid EC, Parkinson JS (1988) Transmitter and receiver modules in bacterial signaling proteins. Proc Natl Acad Sci USA 85:4981–4985PubMedCrossRefGoogle Scholar
  50. Koretke KK, Lupas AN, Warren PV, Rosenberg M, Brown JR (2000) Evolution of two-component signal transduction. Mol Biol Evol 17:1956–1970PubMedGoogle Scholar
  51. Krämer S, Sellge G, Lorentz A, Krueger D, Schemann M, Feilhauer K, Gunzer F, Bischoff SC (2008) Selective activation of human intestinal mast cells by Escherichia colihemolysin. J Immunol 181:1438–1445PubMedGoogle Scholar
  52. Kwon DH, Lu CD (2006) Polyamines induce resistance to cationic peptide, aminoglycoside, and quinolone antibiotics in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 50:1615–1622PubMedCrossRefGoogle Scholar
  53. Kwon DH, Lu CD (2007) Polyamine effects on antibiotic susceptibility in bacteria. Antimicrob Agents Chemother 51:2070–2077PubMedCrossRefGoogle Scholar
  54. Kyriakidis DA, Heller JS, Canellakis ES (1978) Modulation of ornithine decarboxylase activity in Escherichia coli by positive and negative effectors. Proc Natl Acad Sci USA 75:4699–4703PubMedCrossRefGoogle Scholar
  55. Kyriakidis DA, Theodorou MC, Filippou PS, Kyriakidis KD, Tiligada E (2008) Effect of histamine on the signal transduction of the AtoSC two component system and involvement in poly-(R)-3-hydroxybutyrate biosynthesis in Escherichia coli. Amino Acids 35:45–52PubMedCrossRefGoogle Scholar
  56. Kyriakidis K, Zampeli E, Tiligada E (2009) Histamine levels in whole peripheral blood from women with ductal breast cancer: a pilot study. Inflamm Res (in press)Google Scholar
  57. Laub MT, Biondi EG, Skerker JM (2007) Phosphotransfer profiling: systematic mapping of two-component signal transduction pathways and phosphorelays. Methods Enzymol 423:531–548PubMedCrossRefGoogle Scholar
  58. Lee SY, DeLaTorre A, Yan D, Kustu S, Nixon BT, Wemmer DE (2003) Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains. Genes Dev 17:2552–2563PubMedCrossRefGoogle Scholar
  59. Lioliou EE, Kyriakidis DA (2004) The role of bacterial antizyme: From an inhibitory protein to AtoC transcriptional regulator. Microb Cell Fact 3:8PubMedCrossRefGoogle Scholar
  60. Lioliou EE, Mimitou EP, Grigoroudis AI, Panagiotidis CH, Panagiotidis CA, Kyriakidis DA (2005) Phosphorylation activity of the response regulator of the two-component signal transduction system AtoSC in E. coli. Biochim Biophys Acta 1725:257–268PubMedGoogle Scholar
  61. Lolkema JS (2006) Domain structure and pore loops in the 2-hydroxycarboxylate transporter family. J Mol Microbiol Biotechnol 11:318–325PubMedCrossRefGoogle Scholar
  62. Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369PubMedCrossRefGoogle Scholar
  63. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to Plastic. Microbiol Mol Biol Rev 63:21–53PubMedGoogle Scholar
  64. Marceau M, Sebbane F, Ewann F, Collyn F, Lindner B, Campos MA, Bengoechea JA, Simonet M (2004) The pmrF polymyxin-resistance operon of Yersinia pseudotuberculosis is upregulated by the PhoP-PhoQ two-component system but not by PmrA-PmrB, and is not required for virulence. Microbiology 150:3947–3957PubMedCrossRefGoogle Scholar
  65. Maris AE, Kaczor-Grzeskowiak M, Ma Z, Kopka ML, Gunsalus RP, Dickerson RE (2005) Primary and secondary modes of DNA recognition by the NarL two-component response regulator. Biochemistry 44:14538–14552PubMedCrossRefGoogle Scholar
  66. Martínez-Hackert E, Stock AM (1997) Structural relationships in the OmpR family of winged-helix transcription factors. J Mol Biol 269:301–312PubMedCrossRefGoogle Scholar
  67. Matta MK, Lioliou EE, Panagiotidis CH, Kyriakidis DA, Panagiotidis CA (2007) Interactions of the antizyme/AtoC with regulatory elements of the Escherichia coli atoDAEB operon. J Bacteriol 189:6324–6332PubMedCrossRefGoogle Scholar
  68. Medina MÁ, Urdiales JL, Rodríguez-Caso C, Ramírez FJ, Sánchez-Jiménez F (2003) Biogenic amines and polyamines: similar biochemistry for different physiological missions and biomedical applications. Crit Rev Biochem Mol Biol 38:23–59PubMedCrossRefGoogle Scholar
  69. Merighi M, Majerczak DR, Stover EH, Coplin DL (2003) The HrpX/HrpY two-component system activates hrpS expression, the first step in the regulatory cascade controlling the Hrp regulon in Pantoea stewartii subsp. stewartii. Mol Plant Microbe Interact 16:238–248PubMedCrossRefGoogle Scholar
  70. Mizuno T (1997) Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res 4:161–168PubMedCrossRefGoogle Scholar
  71. Möker N, Brocker M, Schaffer S, Krämer R, Morbach S, Bott M (2004) Deletion of the genes encoding the MtrA-MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection. Mol Microbiol 54:420–438PubMedCrossRefGoogle Scholar
  72. Morris DR, Boeker EA (1983) Biosynthetic and biodegradative ornithine and arginine decarboxylases from Escherichia coli. Methods Enzymol 94:125–134PubMedCrossRefGoogle Scholar
  73. Nikaido H (1996) Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 178:5853–5859PubMedGoogle Scholar
  74. Ninfa AJ, Ninfa EG, Lupas AN, Stock A, Magasanik B, Stock J (1988) Crosstalk between bacterial chemotaxis signal transduction proteins and regulators of transcription of the Ntr regulon: evidence that nitrogen assimilation and chemotaxis are controlled by a common phosphotransfer mechanism. Proc Natl Acad Sci USA 85:5492–5496PubMedCrossRefGoogle Scholar
  75. Ogra PL, Welliver RC Sr (2008) Effects of early environment on mucosal immunologic homeostasis, subsequent immune responses and disease outcome. Nestle Nutr Workshop Ser Pediatr Program 61:145–181PubMedCrossRefGoogle Scholar
  76. Oshima T, Aiba H, Masuda Y, Kanaya S, Sugiura M, Wanner BL, Mori H, Mizuno T (2002) Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol 46:281–291PubMedCrossRefGoogle Scholar
  77. Palotai R, Szalay MS, Csermely P (2008) Chaperones as integrators of cellular networks: changes of cellular integrity in stress and diseases. IUBMB Life 60:10–18PubMedCrossRefGoogle Scholar
  78. Parkinson JS, Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu Rev Genet 26:71–112PubMedCrossRefGoogle Scholar
  79. Pauli G, Overath P (1972) ato Operon: a highly inducible system for acetoacetate and butyrate degradation in Escherichia coli. Eur J Biochem 29:553–562PubMedCrossRefGoogle Scholar
  80. Pavlov E, Grimbly C, Diao CT, French RJ (2005) A high-conductance mode of a poly-3-hydroxybutyrate/calcium/polyphosphate channel isolated from competent Escherichia coli cells. FEBS Lett 579:5187–5192PubMedCrossRefGoogle Scholar
  81. Pelton JG, Kustu S, Wemmer DE (1999) Solution structure of the DNA-binding domain of NtrC with three alanine substitutions. J Mol Biol 292:1095–1110PubMedCrossRefGoogle Scholar
  82. Perron K, Caille O, Rossier C, Van Delden C, Dumas JL, Köhler T (2004) CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J Biol Chem 279:8761–8768PubMedCrossRefGoogle Scholar
  83. Pilalis E, Grigoroudis A, Chatziioannou A, Panagiotidis AC, Kolisis F, Kyriakidis DA (2008) E. coli genome-wide promoter analysis in search for potential AtoC target elements. FEBS J 275(Suppl 1):286Google Scholar
  84. Rabin RS, Stewart V (1993) Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate- and nitrite-regulated gene expression in Escherichia coli K-12. J Bacteriol 175:3259–3268PubMedGoogle Scholar
  85. Reading NC, Torres AG, Kendall MM, Hughes DT, Yamamoto K, Sperandio V (2007) A novel two-component signaling system that activates transcription of an enterohemorrhagic Escherichia coli effector involved in remodeling of host actin. J Bacteriol 189:2468–2476PubMedCrossRefGoogle Scholar
  86. Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4:R54PubMedCrossRefGoogle Scholar
  87. Reitzer L, Schneider BL (2001) Metabolic context and possible physiological themes of σ54-dependent genes in Escherichia coli. Microbiol Mol Biol Rev 65:422–444PubMedCrossRefGoogle Scholar
  88. Reusch RN, Huang R, Bramble LL (1995) Poly-3-hydroxybutyrate/polyphosphate complexes form voltage-activated Ca2+ channels in the plasma membranes of Escherichia coli. Biophys J 69:754–766PubMedCrossRefGoogle Scholar
  89. Rhie HG, Dennis D (1995) Role of fadR and atoC(Con) mutations in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in recombinant pha + Escherichia coli. Appl Environ Microbiol 61:2487–2492PubMedGoogle Scholar
  90. Rogers PD, Liu TT, Barker KS, Hilliard GM, English BK, Thornton J, Swiatlo E, McDaniel LS (2007) Gene expression profiling of the response of Streptococcus pneumoniae to penicillin. J Antimicrob Chemother 59:616–626PubMedCrossRefGoogle Scholar
  91. Ruiz-Chica AJ, Soriano A, Tuñón I, Sánchez-Jiménez F, Silla E, Ramírez FJ (2006) FT-Raman and QM/MM study of the interaction between histamine and DNA. Chem Phys 324:579–590CrossRefGoogle Scholar
  92. Santos JL, Shiozaki K (2001) Fungal histidine kinases. Sci STKE 98:RE1Google Scholar
  93. Stock AM, Wylie DC, Mottonen JM, Lupas AN, Ninfa EG, Ninfa AJ, Schutt CE, Stock JB (1988) Phosphoproteins involved in bacterial signal transduction. Cold Spring Harb Symp Quant Biol 53:49–57PubMedGoogle Scholar
  94. Stock AM, Mottonen JM, Stock JB, Schutt CE (1989) Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis. Nature 337:745–749PubMedCrossRefGoogle Scholar
  95. Stock AM, Robinson VL, Goudreau PN (2000) Two component signal transduction. Ann Rev Biochem 69:183–215PubMedCrossRefGoogle Scholar
  96. Theodorou MC, Panagiotidis CA, Panagiotidis CH, Pantazaki AA, Kyriakidis DA (2006) Involvement of the AtoSC signal transduction system in poly-(R)-3-hydroxybutyrate biosynthesis in Escherichia coli. Biochim Biophys Acta 1760:896–906PubMedGoogle Scholar
  97. Theodorou MC, Theodorou EC, Panagiotidis CA, Kyriakidis DA (2007) Spermidine triggering effect to the signal transduction through the AtoSC/Az two-component system in Escherichia coli. Biochim Biophys Acta 1770:1104–1114PubMedGoogle Scholar
  98. Theodorou MC, Tiligada E, Kyriakidis DA (2008a) The involvement of AtoSC two-component system in E. coli chemotaxis FEBS J 275(Suppl 1):290Google Scholar
  99. Theodorou MC, Tiligada E, Kyriakidis DA (2008b) Extracellular Ca2+ transients affect poly-(R)-3-hydroxybutyrate regulation by the AtoSC system in E. coli, Biochem J SubmittedGoogle Scholar
  100. Ulrich LE, Zhulin IB (2007) MiST: a microbial signal transduction database. Nucleic Acids Res 35:D386–D390PubMedCrossRefGoogle Scholar
  101. Volkman BF, Lipson D, Wemmer DE, Kern D (2001) Two-state allosteric behavior in a single-domain signaling protein. Science 291:2429–2433PubMedCrossRefGoogle Scholar
  102. West AH, Stock AM (2001) Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26:369–376PubMedCrossRefGoogle Scholar
  103. Wilkinson MG, Millar JBA (2000) Control of the eukaryotic cell cycle by MAP kinase signaling pathways. FASEB J 14:2147–2157PubMedCrossRefGoogle Scholar
  104. Wright JS, Olekhnovich IN, Touchie G, Kadner RJ (2000) The histidine kinase domain of UhpB inhibits UhpA action at the Escherichia coli uhpT promoter. J Bacteriol 182:6279–6286PubMedCrossRefGoogle Scholar
  105. Yamamoto K, Hirao K, Oshima T, Aiba H, Utsumi R, Ishihama A (2005) Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 280:1448–1456PubMedCrossRefGoogle Scholar
  106. Zampeli E, Pitychoutis P, Papadopoulou-Daifoti Z, Tiligada E (2009) Systemic challenge with lipopolysaccharide increases histamine levels in the conjunctiva and cartilage, but not hypothalamus of Sprague-Dawley rats. Inflamm Res (in press)Google Scholar
  107. Zhou L, Lei XH, Bochner BR, Wanner BL (2003) Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems. J Bacteriol 185:4956–4972PubMedCrossRefGoogle Scholar
  108. Zimmer DP, Soupene E, Lee HL, Wendisch VF, Khodursky AB, Peter BJ, Bender RA, Kustu S (2000) Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc Natl Acad Sci USA 97:14674–14679PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Laboratory of Biochemistry, Department of ChemistryAristotle University of ThessalonikiThessalonikiGreece
  2. 2.National Hellenic Research FoundationAthensGreece
  3. 3.Department of Pharmacology, Medical SchoolUniversity of AthensAthensGreece

Personalised recommendations