Advertisement

Amino Acids

, 37:499 | Cite as

Tyrosine-kinases in bacteria: from a matter of controversy to the status of key regulatory enzymes

  • Emmanuelle Bechet
  • Sébastien Guiral
  • Sophie Torres
  • Ivan Mijakovic
  • Alain-Jean Cozzone
  • Christophe GrangeasseEmail author
Review Article

Abstract

When considering protein phosphorylation in bacteria, phosphorylation of aspartic acid and histidine residues mediated by the two-component systems is the first to spring to mind. And yet other phosphorylation systems have been described in bacteria in the past 20 years including eukaryotic-like serine/threonine kinases and more recently tyrosine-kinases. Among the latter, a peculiar type is widespread among bacteria, but not in higher organisms. These enzymes possess unique structural features defining thus a new family of enzymes termed Bacterial tyrosine kinases (BY-kinases). BY-kinases have been shown to be mainly involved in polysaccharide production, but their ability to phosphorylate endogenous substrates indicates that they participate in the regulation of other functions of the bacterial cell. Recent advances in mass spectrometry based phosphoproteomics provided lists of many new phosphotyrosine-proteins, indicating that BY-kinases may be involved in regulating a large array of other cellular functions. One may expect that in a near future, tyrosine phosphorylation will turn out to be one of the key regulatory processes in the bacterial cell and will yield new insights into the understanding of its physiology.

Keywords

Tyrosine-kinase Phosphorylation BY-kinase Bacterial physiology Regulatory process Phosphoproteomics Signaling 

Notes

Acknowledgments

This work was supported by grants from the Centre National de la Recherche Scientifique (CNRS), the University of Lyon, the Région Rhône-Alpes, the Agence Nationale de la Recherche (ANR-07-JCJC0125-01). IM was supported by grants from the INRA and Lundbeckfonden.

References

  1. Bakal CJ, Davies JE (2000) No longer an exclusive club: eukaryotic signalling domains in bacteria. Trends Cell Biol 10:32–38PubMedCrossRefGoogle Scholar
  2. Becker A, Puhler A (1998) Specific amino acid substitutions in the proline-rich motif of the Rhizobium meliloti ExoP protein result in enhanced production of low-molecular-weight succinoglycan at the expense of high-molecular-weight succinoglycan. J Bacteriol 180:395–399PubMedGoogle Scholar
  3. Bender MH, Cartee RT, Yother J (2003) Positive correlation between tyrosine phosphorylation of CpsD and capsular polysaccharide production in Streptococcus pneumoniae. J Bacteriol 185:6057–6066PubMedCrossRefGoogle Scholar
  4. Chow K, Ng D, Stokes R, Johnson P (1994) Protein tyrosine phosphorylation in Mycobacterium tuberculosis. FEMS Microbiol Lett 124:203–207PubMedCrossRefGoogle Scholar
  5. Collins RF, Beis K, Clarke BR, Ford RC, Hulley M, Naismith JH, Whitfield C (2006) Periplasmic protein–protein contacts in the inner membrane protein Wzc form a tetrameric complex required for the assembly of Escherichia coli group 1 capsules. J Biol Chem 281:2144–2150PubMedCrossRefGoogle Scholar
  6. Cortay JC, Rieul C, Duclos B, Cozzone AJ (1986) Characterization of the phosphoproteins of Escherichia coli cells by electrophoretic analysis. Eur J Biochem 159:227–237PubMedCrossRefGoogle Scholar
  7. Cozzone AJ (1993) ATP-dependent protein kinases in bacteria. J Cell Biochem 51:7–13PubMedCrossRefGoogle Scholar
  8. Cozzone AJ (1998) Post-translational modification of proteins by reversible phosphorylation in prokaryotes. Biochimie 80:43–48PubMedCrossRefGoogle Scholar
  9. Deutscher J, Saier MH Jr (1983) ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes. Proc Natl Acad Sci USA 80:6790–6794PubMedCrossRefGoogle Scholar
  10. Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031PubMedCrossRefGoogle Scholar
  11. Doublet P, Vincent C, Grangeasse C, Cozzone AJ, Duclos B (1999) On the binding of ATP to the autophosphorylating protein, Ptk, of the bacterium Acinetobacter johnsonii. FEBS Lett 445:137–143PubMedCrossRefGoogle Scholar
  12. Doublet P, Grangeasse C, Obadia B, Vaganay E, Cozzone AJ (2002) Structural organization of the protein–tyrosine autokinase Wzc within Escherichia coli cells. J Biol Chem 277:37339–37348PubMedCrossRefGoogle Scholar
  13. Foster R, Thorner J, Martin GS (1989) Nucleotidylation, not phosphorylation, is the major source of the phosphotyrosine detected in enteric bacteria. J Bacteriol 171:272–279PubMedGoogle Scholar
  14. Freestone P, Grant S, Trinei M, Onoda T, Norris V (1998) Protein phosphorylation in Escherichia coli L. form NC-7. Microbiology 144(Pt 12):3289–3295PubMedCrossRefGoogle Scholar
  15. Garnak M, Reeves HC (1979) Phosphorylation of isocitrate dehydrogenase of Escherichia coli. Science 203:1111–1112PubMedCrossRefGoogle Scholar
  16. Grangeasse C, Doublet P, Vaganay E, Vincent C, Deleage G, Duclos B, Cozzone AJ (1997) Characterization of a bacterial gene encoding an autophosphorylating protein tyrosine-kinase. Gene 204:259–265PubMedCrossRefGoogle Scholar
  17. Grangeasse C, Doublet P, Vincent C, Vaganay E, Riberty M, Duclos B, Cozzone AJ (1998) Functional characterization of the low-molecular-mass phosphotyrosine-protein phosphatase of Acinetobacter johnsonii. J Mol Biol 278:339–347PubMedCrossRefGoogle Scholar
  18. Grangeasse C, Doublet P, Cozzone AJ (2002) Tyrosine phosphorylation of protein kinase Wzc from Escherichia coli K12 occurs through a two-step process. J Biol Chem 277:7127–7135PubMedCrossRefGoogle Scholar
  19. Grangeasse C, Obadia B, Mijakovic I, Deutscher J, Cozzone AJ, Doublet P (2003) Autophosphorylation of the Escherichia coli protein kinase Wzc regulates tyrosine phosphorylation of Ugd, a UDP-glucose dehydrogenase. J Biol Chem 278:39323–39329PubMedCrossRefGoogle Scholar
  20. Grangeasse C, Cozzone AJ, Deutscher J, Mijakovic I (2007) Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology. Trends Biochem Sci 32:86–94PubMedCrossRefGoogle Scholar
  21. Hunter T (2000) Signaling—2000 and beyond. Cell 100:113–127PubMedCrossRefGoogle Scholar
  22. Jadeau F, Bechet E, Cozzone AJ, Deleage G, Grangeasse C, Combet C (2008) Identification of the idiosyncratic bacterial protein–tyrosine kinase (BY-kinase) family signature. Bioinformatics 24:2427–2430PubMedCrossRefGoogle Scholar
  23. Kelly-Wintenberg K, South SL, Montie TC (1993) Tyrosine phosphate in a- and b-type flagellins of Pseudomonas aeruginosa. J Bacteriol 175:2458–2461PubMedGoogle Scholar
  24. Kennelly PJ, Potts M (1996) Fancy meeting you here! A fresh look at “prokaryotic” protein phosphorylation. J Bacteriol 178:4759–4764PubMedGoogle Scholar
  25. Kirstein J, Turgay K (2005) A new tyrosine phosphorylation mechanism involved in signal transduction in Bacillus subtilis. J Mol Microbiol Biotechnol 9:182–188PubMedCrossRefGoogle Scholar
  26. Klein G, Dartigalongue C, Raina S (2003) Phosphorylation-mediated regulation of heat shock response in Escherichia coli. Mol Microbiol 48:269–285PubMedCrossRefGoogle Scholar
  27. Klumpp S, Krieglstein J (2002) Phosphorylation and dephosphorylation of histidine residues in proteins. Eur J Biochem 269:1067–1071PubMedCrossRefGoogle Scholar
  28. Kolot M, Gorovits R, Silberstein N, Fichtman B, Yagil E (2008) Phosphorylation of the integrase protein of coliphage HK022. Virology 375:383–390PubMedCrossRefGoogle Scholar
  29. Lacour S, Doublet P, Obadia B, Cozzone AJ, Grangeasse C (2006) A novel role for protein–tyrosine-kinase Etk from Escherichia coli K-12 related to polymyxin resistance. Res Microbiol 157:637–641PubMedCrossRefGoogle Scholar
  30. Lacour S, Bechet E, Cozzone AJ, Mijakovic I, Grangeasse C (2008) Tyrosine phosphorylation of the UDP-glucose dehydrogenase of Escherichia coli is at the crossroads of colanic acid synthesis and polymyxin resistance. PLoS ONE 3:e3053PubMedCrossRefGoogle Scholar
  31. Lee DC, Zheng J, She YM, Jia Z (2008) Structure of Escherichia coli tyrosine-kinase Etk reveals a novel activation mechanism. Embo J 27:1758–1766PubMedCrossRefGoogle Scholar
  32. Leipe DD, Wolf YI, Koonin EV, Aravind L (2002) Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317:41–72PubMedCrossRefGoogle Scholar
  33. Leipe DD, Koonin EV, Aravind L (2003) Evolution and classification of P-loop kinases and related proteins. J Mol Biol 333:781–815PubMedCrossRefGoogle Scholar
  34. Leonard CJ, Aravind L, Koonin EV (1998) Novel families of putative protein kinases in bacteria and archaea:evolution of the “eukaryotic” protein kinase superfamily. Genome Res 8:1038–1047PubMedGoogle Scholar
  35. Macek B, Mijakovic I, Olsen JV, Gnad F, Kumar C, Jensen PR, Mann M (2007) The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol Cell Proteomics 4:697–707Google Scholar
  36. Macek B, Gnad F, Soufi B, Kumar C, Olsen JV, Mijakovic I, Mann M (2008) Phosphoproteome analysis of E coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol Cell Proteomics 7:299–307PubMedGoogle Scholar
  37. Manai M, Cozzone AJ (1979) Analysis of the protein-kinase activity of Escherichia coli cells. Biochem Biophys Res Commun 91:819–826PubMedCrossRefGoogle Scholar
  38. Mijakovic I, Poncet S, Boel G, Maze A, Gillet S, Jamet E, Decottignies P, Grangeasse C, Doublet P, Le Marechal P, Deutscher J (2003) Transmembrane modulator-dependent bacterial tyrosine-kinase activates UDP-glucose dehydrogenases. EMBO J 22:4709–4718PubMedCrossRefGoogle Scholar
  39. Mijakovic I, Petranovic D, Macek B, Cepo T, Mann M, Davies J, Jensen PR, Vujaklija D (2006) Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res 34:1588–1596PubMedCrossRefGoogle Scholar
  40. Minic Z, Marie C, Delorme C, Faurie JM, Mercier G, Ehrlich D, Renault P (2007) Control of EpsE, the phosphoglycosyltransferase initiating exopolysaccharide synthesis in Streptococcus thermophilus, by EpsD tyrosine-kinase. J Bacteriol 189:1351–1357PubMedCrossRefGoogle Scholar
  41. Morona JK, Paton JC, Miller DC, Morona R (2000a) Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in streptococcus pneumoniae. Mol Microbiol 35:1431–1442PubMedCrossRefGoogle Scholar
  42. Morona R, Van Den Bosch L, Daniels C (2000b) Evaluation of Wzz/MPA1/MPA2 proteins based on the presence of coiled-coil regions. Microbiology 146(Pt 1):1–4PubMedGoogle Scholar
  43. Morona JK, Morona R, Miller DC, Paton JC (2003) Mutational analysis of the carboxy-terminal (YGX)(4) repeat domain of CpsD, an autophosphorylating tyrosine-kinase required for capsule biosynthesis in Streptococcus pneumoniae. J Bacteriol 185:3009–3019PubMedCrossRefGoogle Scholar
  44. Munoz-Dorado J, Inouye S, Inouye M (1991) A gene encoding a protein serine/threonine kinase is required for normal development of M xanthus, a gram-negative bacterium. Cell 67:995–1006PubMedCrossRefGoogle Scholar
  45. Nakar D, Gutnick DL (2003) Involvement of a protein tyrosine-kinase in production of the polymeric bioemulsifier emulsan from the oil-degrading strain Acinetobacter lwoffii RAG-1. J Bacteriol 185:1001–1009PubMedCrossRefGoogle Scholar
  46. Niemeyer D, Becker A (2001) The molecular weight distribution of succinoglycan produced by Sinorhizobium meliloti is influenced by specific tyrosine phosphorylation and ATPase activity of the cytoplasmic domain of the ExoP protein. J Bacteriol 183:5163–5170PubMedCrossRefGoogle Scholar
  47. Obadia B, Lacour S, Doublet P, Baubichon-Cortay H, Cozzone AJ, Grangeasse C (2007) Influence of tyrosine-kinase Wzc activity on colanic acid production in Escherichia coli K12 cells. J Mol Biol 367:42–53PubMedCrossRefGoogle Scholar
  48. Olivares-Illana V, Meyer P, Bechet E, Gueguen-Chaignon V, Soulat D, Lazereg-Riquier S, Mijakovic I, Deutscher J, Cozzone AJ, Laprevote O, Morera S, Grangeasse C, Nessler S (2008) Structural basis for the regulation mechanism of the tyrosine-kinase CapB from Staphylococcus aureus. PLoS Biol 6:e143PubMedCrossRefGoogle Scholar
  49. Ostrovsky PC, Maloy S (1995) Protein phosphorylation on serine, threonine, and tyrosine residues modulates membrane-protein interactions and transcriptional regulation in Salmonella typhimurium. Genes Dev 9:2034–2041PubMedCrossRefGoogle Scholar
  50. Paiment A, Hocking J, Whitfield C (2002) Impact of phosphorylation of specific residues in the tyrosine autokinase, Wzc, on its activity in assembly of group 1 capsules in Escherichia coli. J Bacteriol 184:6437–6447PubMedCrossRefGoogle Scholar
  51. Pawson T, Scott JD (2005) Protein phosphorylation in signaling—50 years and counting. Trends Biochem Sci 30:286–290PubMedCrossRefGoogle Scholar
  52. Peleg A, Shifrin Y, Ilan O, Nadler-Yona C, Nov S, Koby S, Baruch K, Altuvia S, Elgrably-Weiss M, Abe CM, Knutton S, Saper MA, Rosenshine I (2005) Identification of an Escherichia coli operon required for formation of the O-antigen capsule. J Bacteriol 187:5259–5266PubMedCrossRefGoogle Scholar
  53. Petranovic D, Michelsen O, Zahradka K, Silva C, Petranovic M, Jensen PR, Mijakovic I (2007) Bacillus subtilis strain deficient for the protein tyrosine-kinase PtkA exhibits impaired DNA replication. Mol Microbiol 63:1797–1805PubMedCrossRefGoogle Scholar
  54. Rafter G (1964) Identification of a new form of bound phosphoserine in Escherichia coli. J Biol Chem 239:1044–1047PubMedGoogle Scholar
  55. Ray MK, Kumar GS, Shivaji S (1994) Tyrosine phosphorylation of a cytoplasmic protein from the antartic psychrotrophic bacterium Pseudomonas syringae. FEMS Microbiol Lett 122:49–54CrossRefGoogle Scholar
  56. Shi L, Potts M, Kennelly PJ (1998) The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol Rev 22:229–253PubMedCrossRefGoogle Scholar
  57. Soufi B, Gnad F, Jensen PR, Petranovic D, Mann M, Mijakovic I, Macek B (2008) The Ser/Thr/Tyr phosphoproteome of Lactococcus lactis IL1403 reveals multiply phosphorylated proteins. Proteomics 8:3486–3493PubMedCrossRefGoogle Scholar
  58. Soulat D, Jault JM, Duclos B, Geourjon C, Cozzone AJ, Grangeasse C (2006) Staphylococcus aureus operates protein–tyrosine phosphorylation through a specific mechanism. J Biol Chem 281:14048–14056PubMedCrossRefGoogle Scholar
  59. Soulat D, Grangeasse C, Vaganay E, Cozzone AJ, Duclos B (2007) UDP-acetyl-mannosamine dehydrogenase is an endogenous protein substrate of Staphylococcus aureus protein–tyrosine-kinase activity. J Mol Microbiol Biotechnol 13:45–54PubMedCrossRefGoogle Scholar
  60. Thomas SR, Trust TJ (1995) Tyrosine phosphorylation of the tetragonal paracrystalline array of Aeromonas hydrophila: molecular cloning and high-level expression of the S-layer protein gene. J Mol Biol 245:568–581PubMedCrossRefGoogle Scholar
  61. Thomasson B, Link J, Stassinopoulos AG, Burke N, Plamann L, Hartzell PL (2002) MglA, a small GTPase, interacts with a tyrosine-kinase to control type IV pili-mediated motility and development of Myxococcus xanthus. Mol Microbiol 46:1399–1413PubMedCrossRefGoogle Scholar
  62. Tocilj A, Munger C, Proteau A, Morona R, Purins L, Ajamian E, Wagner J, Papadopoulos M, Van Den Bosch L, Rubinstein JL, Fethiere J, Matte A, Cygler M (2008) Bacterial polysaccharide co-polymerases share a common framework for control of polymer length. Nat Struct Mol Biol 15:130–138PubMedCrossRefGoogle Scholar
  63. van Tilbeurgh H, Declerck N (2001) Structural insights into the regulation of bacterial signalling proteins containing PRDs. Curr Opin Struct Biol 11:685–693PubMedCrossRefGoogle Scholar
  64. Vincent C, Doublet P, Grangeasse C, Vaganay E, Cozzone AJ, Duclos B (1999) Cells of Escherichia coli contain a protein–tyrosine-kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb. J Bacteriol 181:3472–3477PubMedGoogle Scholar
  65. Wang JY, Koshland DE Jr (1978) Evidence for protein kinase activities in the prokaryote Salmonella typhimurium. J Biol Chem 253:7605–7608PubMedGoogle Scholar
  66. Warner KM, Bullerjahn GS (1994) Light-dependent tyrosine phosphorylation in the cyanobacterium Prochlorothrix hollandica. Plant Physiol 105:629–633PubMedGoogle Scholar
  67. Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68PubMedCrossRefGoogle Scholar
  68. Whitfield C, Larue K (2008) Stop and go: regulation of chain length in the biosynthesis of bacterial polysaccharides. Nat Struct Mol Biol 15:121–123PubMedCrossRefGoogle Scholar
  69. Wu J, Ohta N, Zhao JL, Newton A (1999) A novel bacterial tyrosine-kinase essential for cell division and differentiation. Proc Natl Acad Sci USA 96:13068–13073PubMedCrossRefGoogle Scholar
  70. Wugeditsch T, Paiment A, Hocking J, Drummelsmith J, Forrester C, Whitfield C (2001) Phosphorylation of Wzc, a tyrosine autokinase, is essential for assembly of group 1 capsular polysaccharides in Escherichia coli. J Biol Chem 276:2361–2371PubMedCrossRefGoogle Scholar
  71. Zhao X, Lam JS (2002) WaaP of Pseudomonas aeruginosa is a novel eukaryotic type protein–tyrosine-kinase as well as a sugar kinase essential for the biosynthesis of core lipopolysaccharide. J Biol Chem 277:4722–4730PubMedCrossRefGoogle Scholar
  72. Zheng J, He C, Singh VK, Martin NL, Jia Z (2007) Crystal structure of a novel prokaryotic Ser/Thr kinase and its implication in the Cpx stress response pathway. Mol Microbiol 63:1360–1371PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Emmanuelle Bechet
    • 1
  • Sébastien Guiral
    • 1
  • Sophie Torres
    • 1
  • Ivan Mijakovic
    • 2
  • Alain-Jean Cozzone
    • 1
  • Christophe Grangeasse
    • 1
    Email author
  1. 1.Institut de Biologie et Chimie des ProtéinesCNRS, Université de LyonLyon Cedex 07France
  2. 2.Microbiologie et Génétique MoléculaireAgroParisTech/INRA/CNRSThiverval-GrignonFrance

Personalised recommendations