Amino Acids

, Volume 37, Issue 3, pp 467–477 | Cite as

How are signals transduced across the cytoplasmic membrane? Transport proteins as transmitter of information

Review Article

Abstract

In order to adapt to ever changing environmental conditions, bacteria sense environmental stimuli, and convert them into signals that are transduced intracellularly. Several mechanisms have evolved by which receptors transmit signals across the cytoplasmic membrane. Stimulus perception may trigger receptor dimerization and/or conformational changes. Another mechanism involves the proteolytic procession of a receptor whereby a diffusible cytoplasmic protein is generated. Finally, there is increasing evidence that transport proteins play an important role in transducing signals across the membrane. Transport proteins either directly translocate signaling molecules into the cytoplasm, or transmit information via conformational changes to their interacting partners such as membrane-integrated or soluble components of signal transduction cascades. Employing transport proteins as sensors and regulators of signal transduction represents a sophisticated way of interconnecting metabolic flux and transcriptional regulation in cells.

Keywords

Trigger enzymes ToxR Histidine kinase Secondary transporter ABC transporter 

References

  1. Akiyama Y, Kanehara K, Ito K (2004) RseP (YaeL), an Escherichia coli RIP protease, cleaves transmembrane sequences. EMBO J 23:4434–4442PubMedCrossRefGoogle Scholar
  2. Amster-Choder O, Wright A (1990) Regulation of activity of a transcriptional anti-terminator in E. coli by phosphorylation in vivo. Science 249:540–542PubMedCrossRefGoogle Scholar
  3. Bass RB, Falke JJ (1999) The aspartate receptor cytoplasmic domain: in situ chemical analysis of structure, mechanism and dynamics. Structure 7:829–840PubMedCrossRefGoogle Scholar
  4. Behari J, Youngman P (1998) A homolog of CcpA mediates catabolite control in Listeria monocytogenes but not carbon source regulation of virulence genes. J Bacteriol 180:6316–6324PubMedGoogle Scholar
  5. Bernard R, Guiseppi A, Chippaux M, Foglino M, Denizot F (2007) Resistance to bacitracin in Bacillus subtilis: unexpected requirement of the BceAB ABC transporter in the control of expression of its own structural genes. J Bacteriol 189:8636–8642PubMedCrossRefGoogle Scholar
  6. Böckmann R, Dickneite C, Middendorf B, Goebel W, Sokolovic Z (1996) Specific binding of the Listeria monocytogenes transcriptional regulator PrfA to target sequences requires additional factor(s) and is influenced by iron. Mol Microbiol 22:643–653PubMedCrossRefGoogle Scholar
  7. Böhm A, Boos W (2004) Gene regulation in prokaryotes by subcellular relocalization of transcription factors. Curr Opin Microbiol 7:151–156PubMedCrossRefGoogle Scholar
  8. Bohne J, Kestler H, Uebele C, Sokolovic Z, Goebel W (1996) Differential regulation of the virulence genes of Listeria monocytogenes by the transcriptional activator PrfA. Mol Microbiol 20:1189–1198PubMedCrossRefGoogle Scholar
  9. Bukau B, Ehrmann M, Boos W (1986) Osmoregulation of the maltose regulon in Escherichia coli. J Bacteriol 166:884–891PubMedGoogle Scholar
  10. Chevance FF, Erhardt M, Lengsfeld C, Lee SJ, Boos W (2006) Mlc of Thermus thermophilus: a glucose-specific regulator for a glucose/mannose ABC transporter in the absence of the phosphotransferase system. J Bacteriol 188:6561–6571PubMedCrossRefGoogle Scholar
  11. Commichau FM, Stülke J (2008) Trigger enzymes: bifunctional proteins active in metabolism and in controlling gene expression. Mol Microbiol 67:692–702PubMedGoogle Scholar
  12. Coutts G, Thomas G, Blakey D, Merrick M (2002) Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB. EMBO J 21:536–545PubMedCrossRefGoogle Scholar
  13. Cox GB, Webb D, Rosenberg H (1989) Specific amino acid residues in both the PstB and PstC proteins are required for phosphate transport by the Escherichia coli Pst system. J Bacteriol 171:1531–1534PubMedGoogle Scholar
  14. Cunningham BC, Ultsch M, De Vos AM, Mulkerrin MG, Clauser KR, Wells JA (1991) Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule. Science 254:821–825PubMedCrossRefGoogle Scholar
  15. Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364 (table)PubMedCrossRefGoogle Scholar
  16. Dell CL, Neely MN, Olson ER (1994) Altered pH and lysine signalling mutants of cadC, a gene encoding a membrane-bound transcriptional activator of the Escherichia coli cadBA operon. Mol Microbiol 14:7–16PubMedCrossRefGoogle Scholar
  17. Didion T, Regenberg B, Jorgensen MU, Kielland-Brandt MC, Andersen HA (1998) The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol Microbiol 27:643–650PubMedCrossRefGoogle Scholar
  18. Ehrmann M, Clausen T (2004) Proteolysis as a regulatory mechanism. Annu Rev Genet 38:709–724PubMedCrossRefGoogle Scholar
  19. Ellis J, Carlin A, Steffes C, Wu J, Liu J, Rosen BP (1995) Topological analysis of the lysine-specific permease of Escherichia coli. Microbiology 141(Pt 8):1927–1935PubMedCrossRefGoogle Scholar
  20. Engelke T, Jagadish MN, Pühler A (1987) Biochemical and genetical analysis of Rhizobium meliloti mutants defective in C4-dicarboxylate transport. J Gen Microbiol 133:3019–3029Google Scholar
  21. Engelke T, Jording D, Kapp D, Pühler A (1989) Identification and sequence analysis of the Rhizobium meliloti dctA gene encoding the C4-dicarboxylate carrier. J Bacteriol 171:5551–5560PubMedGoogle Scholar
  22. Freitag NE, Rong L, Portnoy DA (1993) Regulation of the prfA transcriptional activator of Listeria monocytogenes: multiple promoter elements contribute to intracellular growth and cell-to-cell spread. Infect Immun 61:2537–2544PubMedGoogle Scholar
  23. Gilbreth SE, Benson AK, Hutkins RW (2004) Catabolite repression and virulence gene expression in Listeria monocytogenes. Curr Microbiol 49:95–98PubMedCrossRefGoogle Scholar
  24. Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624PubMedCrossRefGoogle Scholar
  25. Hasselblatt H, Kurzbauer R, Wilken C, Krojer T, Sawa J, Kurt J, Kirk R, Hasenbein S, Ehrmann M, Clausen T (2007) Regulation of the sigmaE stress response by DegS: how the PDZ domain keeps the protease inactive in the resting state and allows integration of different OMP-derived stress signals upon folding stress. Genes Dev 21:2659–2670PubMedCrossRefGoogle Scholar
  26. Hazelbauer GL (1975) Maltose chemoreceptor of Escherichia coli. J Bacteriol 122:206–214PubMedGoogle Scholar
  27. Heermann R, Jung K (2004) Structural features and mechanisms for sensing high osmolarity in microorganisms. Curr Opin Microbiol 7:168–174PubMedCrossRefGoogle Scholar
  28. Heermann R, Altendorf K, Jung K (1998) The turgor sensor KdpD of Escherichia coli is a homodimer. Biochim Biophys Acta 1415:114–124PubMedCrossRefGoogle Scholar
  29. Heinrich J, Wiegert T (2006) YpdC determines site-1 degradation in regulated intramembrane proteolysis of the RsiW anti-sigma factor of Bacillus subtilis. Mol Microbiol 62:566–579PubMedCrossRefGoogle Scholar
  30. Heinrich A, Woyda K, Brauburger K, Meiss G, Detsch C, Stülke J, Forchhammer K (2006) Interaction of the membrane-bound GlnK-AmtB complex with the master regulator of nitrogen metabolism TnrA in Bacillus subtilis. J Biol Chem 281:34909–34917PubMedCrossRefGoogle Scholar
  31. Hulko M, Berndt F, Gruber M, Linder JU, Truffault V, Schultz A, Martin J, Schultz JE, Lupas AN, Coles M (2006) The HAMP domain structure implies helix rotation in transmembrane signaling. Cell 126:929–940PubMedCrossRefGoogle Scholar
  32. Hurwitz DR, Emanuel SL, Nathan MH, Sarver N, Ullrich A, Felder S, Lax I, Schlessinger J (1991) EGF induces increased ligand binding affinity and dimerization of soluble epidermal growth factor (EGF) receptor extracellular domain. J Biol Chem 266:22035–22043PubMedGoogle Scholar
  33. Javelle A, Lupo D, Li XD, Merrick M, Chami M, Ripoche P, Winkler FK (2007) Structural and mechanistic aspects of Amt/Rh proteins. J Struct Biol 158:472–481PubMedCrossRefGoogle Scholar
  34. Joly N, Bohm A, Boos W, Richet E (2004) MalK, the ATP-binding cassette component of the Escherichia coli maltodextrin transporter, inhibits the transcriptional activator malt by antagonizing inducer binding. J Biol Chem 279:33123–33130PubMedCrossRefGoogle Scholar
  35. Jung H (2002) The sodium/substrate symporter family: structural and functional features. FEBS Lett 529:73–77PubMedCrossRefGoogle Scholar
  36. Kaback HR (2005) Structure and mechanism of the lactose permease. C R Biol 328:557–567PubMedCrossRefGoogle Scholar
  37. Käsbauer T, Towb P, Alexandrova O, David CN, Dall’armi E, Staudigl A, Stiening B, Bottger A (2007) The Notch signaling pathway in the cnidarian Hydra. Dev Biol 303:376–390PubMedCrossRefGoogle Scholar
  38. Khorchid A, Ikura M (2006) Bacterial histidine kinase as signal sensor and transducer. Int J Biochem Cell Biol 38:307–312PubMedCrossRefGoogle Scholar
  39. Kleefeld A, Ackermann B, Bauer J, Krämer J, Unden G (2008) The fumarate/succinate antiporter DcuB of Escherichia coli is a bifunctional protein with sites for regulation of DcuS dependent gene expression. J Biol Chem 284(1):265–275PubMedCrossRefGoogle Scholar
  40. Kneuper H, Janausch IG, Vijayan V, Zweckstetter M, Bock V, Griesinger C, Unden G (2005) The nature of the stimulus and of the fumarate binding site of the fumarate sensor DcuS of Escherichia coli. J Biol Chem 280:20596–20603PubMedCrossRefGoogle Scholar
  41. Kwon O, Georgellis D, Lin EC (2003) Rotational on-off switching of a hybrid membrane sensor kinase Tar-ArcB in Escherichia coli. J Biol Chem 278:13192–13195PubMedCrossRefGoogle Scholar
  42. Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW, Frommer WB, Ward JM (1999) The dual function of sugar carriers. Transport and sugar sensing. Plant Cell 11:707–726PubMedCrossRefGoogle Scholar
  43. Lampidis R, Gross R, Sokolovic Z, Goebel W, Kreft J (1994) The virulence regulator protein of Listeria ivanovii is highly homologous to PrfA from Listeria monocytogenes and both belong to the Crp-Fnr family of transcription regulators. Mol Microbiol 13:141–151PubMedCrossRefGoogle Scholar
  44. Lee SJ, Boos W, Bouche JP, Plumbridge J (2000) Signal transduction between a membrane-bound transporter, PtsG, and a soluble transcription factor, Mlc, of Escherichia coli. EMBO J 19:5353–5361PubMedCrossRefGoogle Scholar
  45. Lewis M (2005) The lac repressor. C R Biol 328:521–548PubMedCrossRefGoogle Scholar
  46. Lopian L, Nussbaum-Shochat A, O’Day-Kerstein K, Wright A, Amster-Choder O (2003) The BglF sensor recruits the BglG transcription regulator to the membrane and releases it on stimulation. Proc Natl Acad Sci USA 100:7099–7104PubMedCrossRefGoogle Scholar
  47. Makino K, Shinagawa H, Amemura M, Kawamoto T, Yamada M, Nakata A (1989) Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteins. J Mol Biol 210:551–559PubMedCrossRefGoogle Scholar
  48. Manson MD, Boos W, Bassford PJ Jr, Rasmussen BA (1985) Dependence of maltose transport and chemotaxis on the amount of maltose-binding protein. J Biol Chem 260:9727–9733PubMedGoogle Scholar
  49. Marr AK, Joseph B, Mertins S, Ecke R, Muller-Altrock S, Goebel W (2006) Overexpression of PrfA leads to growth inhibition of Listeria monocytogenes in glucose-containing culture media by interfering with glucose uptake. J Bacteriol 188:3887–3901PubMedCrossRefGoogle Scholar
  50. Mascher T, Helmann JD, Unden G (2006) Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 70:910–938PubMedCrossRefGoogle Scholar
  51. Matson JS, DiRita VJ (2005) Degradation of the membrane-localized virulence activator TcpP by the YaeL protease in Vibrio cholerae. Proc Natl Acad Sci USA 102:16403–16408PubMedCrossRefGoogle Scholar
  52. Megerle JA, Fritz G, Gerland U, Jung K, Radler JO (2008) Timing and dynamics of single cell gene expression in the arabinose utilization system. Biophys J 95:2103–2115PubMedCrossRefGoogle Scholar
  53. Mertins S, Joseph B, Goetz M, Ecke R, Seidel G, Sprehe M, Hillen W, Goebel W, Muller-Altrock S (2007) Interference of components of the phosphoenolpyruvate phosphotransferase system with the central virulence gene regulator PrfA of Listeria monocytogenes. J Bacteriol 189:473–490PubMedCrossRefGoogle Scholar
  54. Miller VL, Taylor RK, Mekalanos JJ (1987) Cholera toxin transcriptional activator ToxR is a transmembrane DNA binding protein. Cell 48:271–279PubMedCrossRefGoogle Scholar
  55. Morbach S, Kramer R (2005) Structure and function of the betaine uptake system BetP of Corynebacterium glutamicum: strategies to sense osmotic and chill stress. J Mol Microbiol Biotechnol 10:143–153PubMedCrossRefGoogle Scholar
  56. Neely MN, Dell CL, Olson ER (1994) Roles of LysP and CadC in mediating the lysine requirement for acid induction of the Escherichia coli cad operon. J Bacteriol 176:3278–3285PubMedGoogle Scholar
  57. Nishijyo T, Haas D, Itoh Y (2001) The CbrA-CbrB two-component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa. Mol Microbiol 40:917–931PubMedCrossRefGoogle Scholar
  58. Panagiotidis CH, Boos W, Shuman HA (1998) The ATP-binding cassette subunit of the maltose transporter MalK antagonizes MalT, the activator of the Escherichia coli mal regulon. Mol Microbiol 30:535–546PubMedCrossRefGoogle Scholar
  59. Pioszak AA, Jiang P, Ninfa AJ (2000) The Escherichia coli PII signal transduction protein regulates the activities of the two-component system transmitter protein NRII by direct interaction with the kinase domain of the transmitter module. Biochemistry 39:13450–13461PubMedCrossRefGoogle Scholar
  60. Plumbridge J (1999) Expression of the phosphotransferase system both mediates and is mediated by Mlc regulation in Escherichia coli. Mol Microbiol 33:260–273PubMedCrossRefGoogle Scholar
  61. Poolman B, Spitzer JJ, Wood JM (2004) Bacterial osmosensing: roles of membrane structure and electrostatics in lipid-protein and protein-protein interactions. Biochim Biophys Acta 1666:88–104PubMedCrossRefGoogle Scholar
  62. Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594PubMedGoogle Scholar
  63. Qin Y, Luo ZQ, Smyth AJ, Gao P, Beck von BS, Farrand SK (2000) Quorum-sensing signal binding results in dimerization of TraR and its release from membranes into the cytoplasm. EMBO J 19:5212–5221PubMedCrossRefGoogle Scholar
  64. Reid CJ, Poole PS (1998) Roles of DctA and DctB in signal detection by the dicarboxylic acid transport system of Rhizobium leguminosarum. J Bacteriol 180:2660–2669PubMedGoogle Scholar
  65. Rietkötter E, Hoyer D, Mascher T (2008) Bacitracin sensing in Bacillus subtilis. Mol Microbiol 68:768–785PubMedCrossRefGoogle Scholar
  66. Rosen BP (1971) Basic amino acid transport in Escherichia coli. J Biol Chem 246:3653–3662PubMedGoogle Scholar
  67. Sal-Man N, Gerber D, Bloch I, Shai Y (2007) Specificity in transmembrane helix-helix interactions mediated by aromatic residues. J Biol Chem 282:19753–19761PubMedCrossRefGoogle Scholar
  68. Schwöppe C, Winkler HH, Neuhaus HE (2003) Connection of transport and sensing by UhpC, the sensor for external glucose-6-phosphate in Escherichia coli. Eur J Biochem 270:1450–1457PubMedCrossRefGoogle Scholar
  69. Steed PM, Wanner BL (1993) Use of the rep technique for allele replacement to construct mutants with deletions of the pstSCAB-phoU operon: evidence of a new role for the PhoU protein in the phosphate regulon. J Bacteriol 175:6797–6809PubMedGoogle Scholar
  70. Steiner H, Fluhrer R, Haass C (2008) Intramembrane proteolysis by {gamma}-secretase. J Biol Chem 283:29627–29631PubMedCrossRefGoogle Scholar
  71. Stock JB, Stock AM, Mottonen JM (1990) Signal transduction in bacteria. Nature 344:395–400PubMedCrossRefGoogle Scholar
  72. Szurmant H, White RA, Hoch JA (2007) Sensor complexes regulating two-component signal transduction. Curr Opin Struct Biol 17:706–715PubMedCrossRefGoogle Scholar
  73. Tetsch L, Koller C, Haneburger I, Jung K (2008) The membrane-integrated transcriptional activator CadC of Escherichia coli senses lysine indirectly via the interaction with the lysine permease LysP. Mol Microbiol 67:570–583PubMedGoogle Scholar
  74. Titgemeyer F, Reizer J, Reizer A, Saier MH Jr (1994) Evolutionary relationships between sugar kinases and transcriptional repressors in bacteria. Microbiology 140:2349–2354PubMedCrossRefGoogle Scholar
  75. van der Heide T, Poolman B (2002) ABC transporters: one, two or four extracytoplasmic substrate-binding sites? EMBO Rep 3:938–943PubMedCrossRefGoogle Scholar
  76. Wood JM (2006) Osmosensing by bacteria. Sci STKE 2006(357):e43CrossRefGoogle Scholar
  77. Wright JSIII, Kadner RJ (2001) The phosphoryl transfer domain of UhpB interacts with the response regulator UhpA. J Bacteriol 183:3149–3159PubMedCrossRefGoogle Scholar
  78. Wu B, Ottow K, Poulsen P, Gaber RF, Albers E, Kielland-Brandt MC (2006) Competitive intra- and extracellular nutrient sensing by the transporter homologue Ssy1p. J Cell Biol 173:327–331PubMedCrossRefGoogle Scholar
  79. Xu Y, Cheah E, Carr PD, van Heeswijk WC, Westerhoff HV, Vasudevan SG, Ollis DL (1998) GlnK, a PII-homologue: structure reveals ATP binding site and indicates how the T-loops may be involved in molecular recognition. J Mol Biol 282:149–165PubMedCrossRefGoogle Scholar
  80. Yarosh OK, Charles TC, Finan TM (1989) Analysis of C4-dicarboxylate transport genes in Rhizobium meliloti. Mol Microbiol 3:813–823PubMedCrossRefGoogle Scholar
  81. Yurgel SN, Kahn ML (2004) Dicarboxylate transport by rhizobia. FEMS Microbiol Rev 28:489–501PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Biology I, Center for Integrated Protein Science Munich (CiPSM)Microbiology of the Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany

Personalised recommendations