Amino Acids

, Volume 38, Issue 1, pp 213–222 | Cite as

Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies

  • Carolin Heggemann
  • Carsten Budke
  • Benjamin Schomburg
  • Zsuzsa Majer
  • Marco Wißbrock
  • Thomas Koop
  • Norbert SewaldEmail author
Original Article


Antifreeze glycoproteins enable life at temperatures below the freezing point of physiological solutions. They usually consist of the repetitive tripeptide unit (-Ala-Ala-Thr-) with the disaccharide α-d-galactosyl-(1–3)-β-N-acetyl-d-galactosamine attached to each hydroxyl group of threonine. Monoglycosylated analogues have been synthesized from the corresponding monoglycosylated threonine building block by microwave-assisted solid phase peptide synthesis. This method allows the preparation of analogues containing sequence variations which are not accessible by other synthetic methods. As antifreeze glycoproteins consist of numerous isoforms they are difficult to obtain in pure form from natural sources. The synthetic peptides have been structurally analyzed by CD and NMR spectroscopy in proton exchange experiments revealing a structure as flexible as reported for the native peptides. Microphysical recrystallization tests show an ice structuring influence and ice growth inhibition depending on the concentration, chain length and sequence of the peptides.


Bioorganic chemistry Microwave synthesis Glycopeptides Recrystallization Circular dichroism 



Antifreeze glycopeptide


Antifreeze protein




Circular dichroism






Ethyl acetate






O-(7-Azabenzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium hexafluorophosphate








Sodium methoxide




O-(Benzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium tetrafluoroborate


Trifluoroacetic acid





The authors gratefully acknowledge support from DFG (SFB 613).


  1. Bhatnagar RS, Gough CA (1996) Circular dichroism of collagen and related polypeptides. In: Fasman GD (ed) Circular dichroism and the conformational analysis of biomolecules. New York, Plenum Press, p 198Google Scholar
  2. Bouvet V, Ben RN (2003) Antifreeze glycoproteins—structure, conformation, and biological applications. Cell Biochem Biophys 39:133–134CrossRefPubMedGoogle Scholar
  3. Brocke C, Kunz H (2002) Synthesis of tumor-associated glycopeptide antigens. Biorg Med Chem 10:3085–3112CrossRefGoogle Scholar
  4. Budke C, Koop T (2006) Ice recrystallization inhibition and molecular recognition of ice faces by poly(vinyl alcohol). Chemphyschem 7:2601–2606CrossRefPubMedGoogle Scholar
  5. Bush CA, Feeney DT, Osuga T, Ralapati S, Yeh Y (1981) Antifreeze glycoprotein. Conformational model based on vacuum ultraviolet circular dichroism data. Int J Peptide Protein Res 17:125–129Google Scholar
  6. Davies PL, Baardsnes J, Kuiper MJ, Walker VK (2002) Structure and function of antifreeze proteins. Philos Trans R Soc London Ser B 357:927–933CrossRefGoogle Scholar
  7. DeVries AL, Wohlschlag DE (1969) Freezing resistance in some Antarctic fishes. Science 163:1073–1075CrossRefPubMedGoogle Scholar
  8. DeVries AL, Komatsu SK, Feeney RE (1970) Chemical and physical properties of freezing point depressing glycoproteins from Antarctic fishes. J Biol Chem 245:2901–2908PubMedGoogle Scholar
  9. Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96:683–720CrossRefPubMedGoogle Scholar
  10. Ernst B, Hart GW, Sinaÿ P (2000) Carbohydrates in chemistry and biology. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  11. Harding MM, Anderberg PI, Haymet AD (2003) ‘Antifreeze’ glycoproteins from polar fish. Eur J Biochem 270:1381–1392CrossRefPubMedGoogle Scholar
  12. Horng JC, Raines RT (2006) Stereoelectronic effects on polyproline conformation. Protein Sci 15:74–83CrossRefPubMedGoogle Scholar
  13. Knight CA, DeVries AL, Oolman LD (1984) Fish antifreeze protein and the freezing and recrystallization of ice. Nature 308:295–296CrossRefPubMedGoogle Scholar
  14. Knight CA, Hallet J, DeVries AL (1988) Solute effects in ice recrystallization: an assessment technique. Cryobiology 25:55–60CrossRefPubMedGoogle Scholar
  15. Knight CA, Wen D, Laursen RA (1995) Nonequilibrium antifreeze peptides and the recrystallization of ice. Cryobiology 32:23–34CrossRefPubMedGoogle Scholar
  16. Lemieux RU, Ratcliffe RM (1979) The azidonitration of tri-O-acetyl-d-galactal. Can J Chem 57:1244–1251CrossRefGoogle Scholar
  17. Li QZ, Yeh Y, Liu JJ, Feeney RE, Krishnan VV (2006) A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins. J Chem Phys 124:204702CrossRefPubMedGoogle Scholar
  18. Makowska J, Rodziewicz-Motowidło S, Bagińska K, Vila JA, Liwo A, Chmurzyński L, Scheraga HA (2006) Polyproline II conformation is one of many local conformational states and is not an overall conformation of unfolded peptides and proteins. Proc Natl Acad Sci USA 103:1744–1749CrossRefPubMedGoogle Scholar
  19. Matsushita T, Hinou H, Kurogochi M, Shimizu H, Nishimura SI (2005) Rapid microwave-assisted solid-phase glycopeptide synthesis. Org Lett 7:877–880CrossRefPubMedGoogle Scholar
  20. Meyer B, Möller H (2007) Conformation of glycopeptides and glycoproteins. Top Curr Chem 267:187–251CrossRefGoogle Scholar
  21. Mitchell SA, Pratt MR, Hruby VJ, Polt R (2001) Solid-phase synthesis of O-linked glycopeptide analogues of enkephalin. J Org Chem 66:2327–2342CrossRefPubMedGoogle Scholar
  22. Parody-Morreale A, Murphy KP, Dicera E, Fall R, DeVries AL, Gill SJ (1988) Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins. Nature 333:782–783CrossRefPubMedGoogle Scholar
  23. Paulsen H, Adermann K (1989) Synthese von O-glycopeptid-sequenzen des N-terminus von interleukin 2. Liebigs Ann Chem 109:751–769CrossRefGoogle Scholar
  24. Rath A, Davidson AR, Deber CM (2005) The structure of “unstructured” regions in peptides and proteins: role of the polyproline II helix in protein folding an recognition. Biopolymers (Pept Sci) 80:179–185CrossRefGoogle Scholar
  25. Raymond JA, Wilson P, DeVries AL (1989) Inhibition of growth of nonbasal planes in ice by fish antifreezes. Proc Natl Acad Sci USA 86:881–885CrossRefPubMedGoogle Scholar
  26. Schultz M, Kunz H (1993) Synthetic O-glycopeptides as model substrates for glycosyltransferases. Tetrahedron Ass 4:1205–1220CrossRefGoogle Scholar
  27. Tachibana Y, Fletcher GL, Fujitani N, Tsuda S, Monde K, Nishimura SI (2004) Antifreeze glycoproteins: elucidation of the structural motifs that are essential for antifreeze activity. Angew Chem 43:856–862CrossRefGoogle Scholar
  28. Yeh Y, Feeney RE (1996) Antifreeze proteins: structures and mechanisms of function. Chem Rev 96:601–617CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Carolin Heggemann
    • 1
  • Carsten Budke
    • 2
  • Benjamin Schomburg
    • 1
  • Zsuzsa Majer
    • 3
  • Marco Wißbrock
    • 1
  • Thomas Koop
    • 2
  • Norbert Sewald
    • 1
    Email author
  1. 1.Organic and Bioorganic ChemistryBielefeld UniversityBielefeldGermany
  2. 2.Physical ChemistryBielefeld UniversityBielefeldGermany
  3. 3.Institute of ChemistryEötvös UniversityBudapestHungary

Personalised recommendations