Amino Acids

, Volume 38, Issue 1, pp 189–197 | Cite as

Diazepam administration after prolonged status epilepticus reduces neurodegeneration in the amygdala but not in the hippocampus during epileptogenesis

  • Felicia Qashu
  • Taiza H. Figueiredo
  • Vassiliki Aroniadou-Anderjaska
  • James P. Apland
  • Maria F. M. Braga
Original Article


An episode of status epilepticus (SE), if left untreated, can lead to death, or brain damage with long-term neurological consequences, including the development of epilepsy. The most common first-line treatment of SE is administration of benzodiazepines (BZs). However, the efficacy of BZs in terminating seizures is reduced with time after the onset of SE; this is accompanied by a reduced efficacy in protecting the hippocampus against neuronal damage, and is associated with impaired function and internalization of hippocampal GABAA receptors. In the present study, using Fluoro-Jade C staining, we found that administration of diazepam to rats at 3 h after the onset of kainic acid-induced SE, at a dose sufficient to terminate SE, had no protective effect on the hippocampus, but produced a significant reduction in neuronal degeneration in the amygdala, piriform cortex, and endopiriform nucleus, examined on days 7–9 after SE. Thus, in contrast to the hippocampus, the amygdala and other limbic structures are responsive to neuroprotection by BZs after prolonged SE, suggesting that GABAA receptors are not significantly altered in these structures during SE.


Amygdala Hippocampus Benzodiazepines Status epilepticus Neurodegeneration Epileptogenesis 



This work was funded by the National Institutes of Health CounterACT Program through the National Institute of Neurological Disorders and Stroke (award # U01 NS058162-01). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the federal government. This work was also supported by the Defense Threat Reduction Agency-Joint Science and Technology Office, Medical S&T Division (grant 1.E0021_07_US_C).


  1. Aroniadou-Anderjaska V, Fritsch B, Qashu F, Braga MF (2008) Pathology and pathophysiology of the amygdala in epileptogenesis and epilepsy. Epilepsy Res 78:102–116. doi: 10.1016/j.eplepsyres.2007.11.011 CrossRefPubMedGoogle Scholar
  2. Babb TL (1991) Research on the anatomy and pathology of epileptic tissue. In: Luders H (ed) Epilepsy surgery. Raven Press, New York, pp 719–727Google Scholar
  3. Babb TL, Brown WJ (1989) Pathological findings in epilepsy. In: Engel J (ed) Surgical treatment of the epilepsies. Raven Press, New York, pp 511–540Google Scholar
  4. Ben-Ari Y (1985) Limbic seizures and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14:375–403CrossRefPubMedGoogle Scholar
  5. Bleck TP (1999) Management approaches to prolonged seizures and status epilepticus. Epilepsia 40(S1):59–63. doi: 10.1111/j.1528-1157.1999.tb00880.x CrossRefGoogle Scholar
  6. Cascino GD, Hesdorffer D, Logroscino G, Hauser WA (1998) Morbidity of nonfebrile status epilepticus in Rochester, Minnesota, 1965–1984. Epilepsia 39:829–832. doi: 10.1111/j.1528-1157.1998.tb01176.x CrossRefPubMedGoogle Scholar
  7. Cendes F, Andermann F, Gloor P, Evans A, Jones-Gotman M, Watson C, Melanson D, Olivier A, Peters T, Lopes-Cendes I, Leroux RT (1993) MRI volumetric measurement of amygdala and hippocampus in temporal lobe epilepsy. Neurology 43:719–725PubMedGoogle Scholar
  8. Cendes F, Andermann F, Gloor P et al (1994) Relationship between atrophy of the amygdala and ictal fear in temporal lobe epilepsy. Brain 117:739–746. doi: 10.1093/brain/117.4.739 CrossRefPubMedGoogle Scholar
  9. Chen S, Buckmaster PS (2005) Stereological analysis of forebrain regions in kainate-treated epileptic rats. Brain Res 1057:141–152. doi: 10.1016/j.brainres.2005.07.058 CrossRefPubMedGoogle Scholar
  10. Chen JW, Wasterlain CG (2006) Status epilepticus: pathophysiology and management in adults. Lancet Neurol 5:246–256. doi: 10.1016/S1474-4422(06)70374-X CrossRefPubMedGoogle Scholar
  11. Covolan L, Mello LE (2000) Temporal profile of neuronal injury following pilocarpine or kainic acid-induced status epilepticus. Epilepsy Res 39:133–152. doi: 10.1016/S0920-1211(99)00119-9 CrossRefPubMedGoogle Scholar
  12. Druga R, Kubová H, Suchomelová L, Haugvicová R (2003) Lithium/pilocarpine status epilepticus-induced neuropathology of piriform cortex and adjoining structures in rats is age-dependent. Physiol Res 52:251–264PubMedGoogle Scholar
  13. Feng HJ, Mathews GC, Kao C, Macdonald RL (2008) Alterations of GABA A-receptor function and allosteric modulation during development of status epilepticus. J Neurophysiol 99:1285–1293. doi: 10.1152/jn.01180.2007 CrossRefPubMedGoogle Scholar
  14. Fritschy JM, Mohler H (1995) GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 359:154–194. doi: 10.1002/cne.903590111 CrossRefPubMedGoogle Scholar
  15. Goddard GV (1967) Development of epileptic seizures through brain stimulation at low intensity. Nature 214:1020–1021. doi: 10.1038/2141020a0 CrossRefPubMedGoogle Scholar
  16. Goodkin HP, Yeh JL, Kapur J (2005) Status epilepticus increases the intracellular accumulation of GABAA receptors. J Neurosci 25:5511–5520. doi: 10.1523/JNEUROSCI.0900-05.2005 CrossRefPubMedGoogle Scholar
  17. Gorter JA, Goncalves Pereira PM, van Vliet EA, Aronica E, Lopes da Silva FH, Lucassen PJ (2003) Neuronal cell death in a rat model for mesial temporal lobe epilepsy is induced by the initial status epilepticus and not by later repeated spontaneous seizures. Epilepsia 44:647–658. doi: 10.1046/j.1528-1157.2003.53902.x CrossRefPubMedGoogle Scholar
  18. Heggli DE, Malthe-Sørensson D (1982) Systemic injection of kainic acid: effect on neurotransmitter markers in piriform cortex, amygdaloid complex, and hippocampus and protection by cortical lesioning and anticonvulsants. Neuroscience 5:1257–1264. doi: 10.1016/0306-4522(82)91132-0 CrossRefGoogle Scholar
  19. Hellier JL, Patrylo PR, Buckmaster PS, Dudek FE (1998) Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy. Epilepsy Res 31:73–84. doi: 10.1016/S0920-1211(98)00017-5 CrossRefPubMedGoogle Scholar
  20. Hesdorffer DC, Logroscino G, Cascino G, Annegers JF, Hauser WA (1998) Risk of unprovoked seizure after acute symptomatic seizure: effect of status epilepticus. Ann Neurol 44:908–912. doi: 10.1002/ana.410440609 CrossRefPubMedGoogle Scholar
  21. Hsieh PF (1999) Neuropathology of limbic status epilepticus by electrical stimulation of naïve rats. Neurol Res 21:399–403PubMedGoogle Scholar
  22. Hudson LP, Munoz DG, Miller L, McLachlan RS, Girvin JP, Blume WT (1993) Amygdaloid sclerosis in temporal lobe epilepsy. Ann Neurol 33:622–631. doi: 10.1002/ana.410330611 CrossRefPubMedGoogle Scholar
  23. Jones DM, Esmaeil N, Maren S, Macdonald RL (2002) Characterization of pharmacoresistance to benzodiazepines in the rat Li-pilocarpine model of status epilepticus. Epilepsy Res 50:301–312. doi: 10.1016/S0920-1211(02)00085-2 CrossRefPubMedGoogle Scholar
  24. Kairiss EW, Racine RJ, Smith GK (1984) The development of the interictal spike during kindling in the rat. Brain Res 322:101–110. doi: 10.1016/0006-8993(84)91185-5 CrossRefPubMedGoogle Scholar
  25. Kish SJ, Sperk G, Hornykiewicz O (1983) Alterations in benzodiazepine and GABA receptor binding in rat brain following systemic injection of kainic acid. Neuropharmacology 22:1303–1309. doi: 10.1016/0028-3908(83)90204-6 CrossRefPubMedGoogle Scholar
  26. Krumholz A, Sung GY, Fisher RS, Barry E, Bergey GK, Grattan LM (1995) Complex partial status epilepticus accompanied by serious morbidity and mortality. Neurology 45:1499–1504PubMedGoogle Scholar
  27. Lemos T, Cavalheiro EA (1995) Suppression of pilocarpine-induced status epilepticus and the late development of epilepsy in rats. Exp Brain Res 102:423–428. doi: 10.1007/BF00230647 CrossRefPubMedGoogle Scholar
  28. Logroscino G, Hesdorffer DC, Cascino GD, Annegers JF, Bagiella E, Hauser WA (2002) Long-term mortality after a first episode of status epilepticus. Neurology 58:537–541PubMedGoogle Scholar
  29. Macdonald RL, Olsen RW (1994) GABAA receptor channels. Annu Rev Neurosci 17:569–602PubMedGoogle Scholar
  30. Majak K, Moryś J (2007) Endopiriform nucleus connectivities: the implication for epileptogenesis and epilepsy. Folia Morphol 66:267–271Google Scholar
  31. McKernan RM, Whiting PJ (1996) Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci 19:139–143. doi: 10.1016/S0166-2236(96)80023-3 CrossRefPubMedGoogle Scholar
  32. Mello LE, Cavalheiro EA, Tan AM, Kupfer WR, Pretorious JK, Babb TL, Finch DM (1993) Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. Epilepsia 34:985–995. doi: 10.1111/j.1528-1157.1993.tb02123.x CrossRefPubMedGoogle Scholar
  33. Mohapel P, Dufresne C, Kelly ME, McIntyre DC (1996) Differential sensitivity of various temporal lobe structures in the rat to kindling and status epilepticus induction. Epilepsy Res 23:179–187. doi: 10.1016/0920-1211(95)00084-4 CrossRefPubMedGoogle Scholar
  34. Naylor DE, Liu H, Wasterlain CG (2005) Trafficking of GABA(A) receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J Neurosci 25:7724–7733. doi: 10.1523/JNEUROSCI.4944-04.2005 CrossRefPubMedGoogle Scholar
  35. Niehoff DL, Kuhar MJ (1983) Benzodiazepine receptors: localization in rat amygdala. J Neurosci 3:2091–2097PubMedGoogle Scholar
  36. Pitkänen A, Tuunanen J, Kälviänen R, Partanen K, Salmenperä T (1998) Amygdala damage in experimental and human temporal lobe epilepsy. Epilepsy Res 32:233–253. doi: 10.1016/S0920-1211(98)00055-2 CrossRefPubMedGoogle Scholar
  37. Pitkänen A, Kharatishvili I, Narkilahti S, Lukasiuk K, Nissinen J (2005) Administration of diazepam during status epilepticus reduces development and severity of epilepsy in rat. Epilepsy Res 63:27–42. doi: 10.1016/j.eplepsyres.2004.10.003 CrossRefPubMedGoogle Scholar
  38. Pitkänen A, Kharatishvili I, Karhunen H, Lukasiuk K, Immonen R, Nairismägi J, Gröhn O, Nissinen J (2007) Epileptogenesis in experimental models. Epilepsia 48(S2):13–20. doi: 10.1111/j.1528-1167.2007.01063.x CrossRefPubMedGoogle Scholar
  39. Qashu F, Fritsch B, Figueiredo T, Aroniadou-Anderjaska V, Braga MF (2008) Functional and molecular alterations of the GABAergic system in the basolateral amygdala during epileptogenesis triggered by status epilepticus. Soc Neurosci 146.9 (abstract)Google Scholar
  40. Quesney LF (1986) Clinical and EEG features of complex partial seizures of temporal lobe origin. Epilepsia 27(S2):27–45. doi: 10.1111/j.1528-1157.1986.tb05738.x CrossRefGoogle Scholar
  41. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294. doi: 10.1016/0013-4694(72)90177-0 CrossRefPubMedGoogle Scholar
  42. Racine RJ, Paxinos G, Mosher JM, Kairiss EW (1988) The effects of various lesions and knife-cuts on septal and amygdala kindling in the rat. Brain Res 454:264–274. doi: 10.1016/0006-8993(88)90826-8 CrossRefPubMedGoogle Scholar
  43. Riba-Bosch A, Pérez-Claussell J (2004) Response to kainic acid injections: changes in staining for zinc, FOS, cell death and glial response in the rat forebrain. Neuroscience 125:803–818. doi: 10.1016/j.neuroscience.2004.02.017 CrossRefPubMedGoogle Scholar
  44. Riss J, Cloyd J, Collins S (2008) Benzodiazepines in epilepsy: pharmacology and pharmacokinetics. Acta Neurol Scand 118:69–86. doi: 10.1111/j.1600-0404.2008.01004.x CrossRefPubMedGoogle Scholar
  45. Schmued LC, Albertson C, Slikker W Jr (1997) Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res 751:37–46. doi: 10.1016/S0006-8993(96)01387-X CrossRefPubMedGoogle Scholar
  46. Schwob JE, Fuller T, Price JL, Olney W (1980) Widespread patterns of neuronal damage following systemic or intracerebral injections of kainic acid: a histological study. Neuroscience 5:991–1014. doi: 10.1016/0306-4522(80)90181-5 CrossRefPubMedGoogle Scholar
  47. Shih TM, Duniho SM, McDonough JH (2003) Control of nerve agent-induced seizures is critical for neuroprotection and survival. Toxicol Appl Pharmacol 188:69–80. doi: 10.1016/S0041-008X(03)00019-X CrossRefPubMedGoogle Scholar
  48. Sieghart W, Sperk G (2002) Subunit composition, distribution, and function of GABA(A) receptor subtypes. Curr Top Med Chem 2:795–816. doi: 10.2174/1568026023393507 CrossRefPubMedGoogle Scholar
  49. Treiman DM (1990) The role of benzodiazepines in the management of status epilepticus. Neurology 40(S5):32–42PubMedGoogle Scholar
  50. Treiman DM (2007) Treatment of convulsive status epilepticus. Int Rev Neurobiol 81:273–285. doi: 10.1016/S0074-7742(06)81018-4 CrossRefPubMedGoogle Scholar
  51. Treiman DM, Meyers PD, Walton NY, Collins JF, Colling C, Rowan AJ, Handforth A, Faught E, Calabrese VP, Uthman BM, Ramsay RE, Mamdani MB (1998) A comparison of four treatments for generalized convulsive status epilepticus. Veterans Affairs Status Epilepticus Cooperative Study Group. N Engl J Med 339:792–798. doi: 10.1056/NEJM199809173391202 CrossRefPubMedGoogle Scholar
  52. Tuunanen J, Halonen T, Pitkänen A (1996) Status epilepticus causes selective regional damage and loss of GABAergic neurons in the rat amygdaloid complex. Eur J Neurosci 8:2711–2725. doi: 10.1111/j.1460-9568.1996.tb01566.x CrossRefPubMedGoogle Scholar
  53. Tuunanen J, Lukasiuk K, Halonen T, Pitkänen A (1999) Status epilepticus-induced neuronal damage in the rat amygdaloid complex: distribution, time-course, and mechanisms. Neuroscience 94:473–495. doi: 10.1016/S0306-4522(99)00251-1 CrossRefPubMedGoogle Scholar
  54. Van Paesschen W, King MD, Duncan JS, Connelly A (2001) The amygdala and temporal lobe simple partial seizures: a prospective and quantitative MRI study. Epilepsia 42:857–862. doi: 10.1046/j.1528-1157.2001.042007857.x CrossRefPubMedGoogle Scholar
  55. Walton NY, Treiman DM (1988) Response of status epilepticus induced by lithium pilocarpine to treatment with diazepam. Exp Neurol 101:267–275. doi: 10.1016/0014-4886(88)90010-6 CrossRefPubMedGoogle Scholar
  56. White LE, Price JL (1993a) The functional anatomy of limbic status epilepticus in the rat. I. Patterns of 14C-2-deoxyglucose uptake and Fos immunocytochemistry. J Neurosci 13:4787–4809PubMedGoogle Scholar
  57. White LE, Price JL (1993b) The functional anatomy of limbic status epilepticus in the rat. II. The effects of focal deactivation. J Neurosci 13:4810–4830PubMedGoogle Scholar
  58. Williamson PD, French JA, Thadani VM, Kim JH, Novelly RA, Spencer SS, Spencer DD, Mattson RH (1993) Characteristics of medial temporal lobe epilepsy: II. Interictal and ictal scalp electroencephalography, neuropsychological testing, neuroimaging, surgical results, and pathology. Ann Neurol 34:781–787. doi: 10.1002/ana.410340605 CrossRefPubMedGoogle Scholar
  59. Wolf HK, Aliashkevich AF, Blümke I, Wiestler OD, Zentner J (1997) Neuronal loss and gliosis of the amygdaloid nucleus in temporal lobe epilepsy. A quantitative analysis of 70 surgical specimens. Acta Neuropathol 93:606–610. doi: 10.1007/s004010050658 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Felicia Qashu
    • 2
  • Taiza H. Figueiredo
    • 1
  • Vassiliki Aroniadou-Anderjaska
    • 1
    • 2
  • James P. Apland
    • 3
  • Maria F. M. Braga
    • 1
    • 2
  1. 1.Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of MedicineUniformed Services University of the Health SciencesBethesdaUSA
  2. 2.Neuroscience ProgramUniformed Services University of the Health SciencesBethesdaUSA
  3. 3.Neurotoxicology BranchUSAMRICDAberdeen Proving GroundUSA

Personalised recommendations