Amino Acids

, Volume 37, Issue 1, pp 153–168 | Cite as

Arginine metabolism and nutrition in growth, health and disease

  • Guoyao WuEmail author
  • Fuller W. Bazer
  • Teresa A. Davis
  • Sung Woo Kim
  • Peng Li
  • J. Marc Rhoads
  • M. Carey Satterfield
  • Stephen B. Smith
  • Thomas E. Spencer
  • Yulong Yin
Review Article


l-Arginine (Arg) is synthesised from glutamine, glutamate, and proline via the intestinal-renal axis in humans and most other mammals (including pigs, sheep and rats). Arg degradation occurs via multiple pathways that are initiated by arginase, nitric-oxide synthase, Arg:glycine amidinotransferase, and Arg decarboxylase. These pathways produce nitric oxide, polyamines, proline, glutamate, creatine, and agmatine with each having enormous biological importance. Arg is also required for the detoxification of ammonia, which is an extremely toxic substance for the central nervous system. There is compelling evidence that Arg regulates interorgan metabolism of energy substrates and the function of multiple organs. The results of both experimental and clinical studies indicate that Arg is a nutritionally essential amino acid (AA) for spermatogenesis, embryonic survival, fetal and neonatal growth, as well as maintenance of vascular tone and hemodynamics. Moreover, a growing body of evidence clearly indicates that dietary supplementation or intravenous administration of Arg is beneficial in improving reproductive, cardiovascular, pulmonary, renal, gastrointestinal, liver and immune functions, as well as facilitating wound healing, enhancing insulin sensitivity, and maintaining tissue integrity. Additionally, Arg or l-citrulline may provide novel and effective therapies for obesity, diabetes, and the metabolic syndrome. The effect of Arg in treating many developmental and health problems is unique among AAs, and offers great promise for improved health and wellbeing of humans and animals.


Arginine Disease Health Nutrition Physiology 



Amino acid




Asymmetric dimethylarginine




Body mass index


Intrauterine growth retardation




N G-monomethy-l-arginine (NMMA)


Nitric oxide


Nitric-oxide synthase




Total parenteral nutrition



This work was supported, in part, by grants from National Institutes of Health (1R21 HD049449), National Research Initiative Competitive Grants (2006-35203-17283, 2008-35206-18762, 2008-35206-18764, and 2008-35203-19120) from the USDA Cooperative State Research, Education, and Extension Service, American Heart Association (0655109Y and 0755024Y), Texas AgriLife Research (H-8200), National Natural Science Foundation of China (30371038 and 30528006), and the Outstanding Overseas Chinese Scholars Fund of The Chinese Academy of Sciences (2005-1-4). We thank Drs. Nick Flynn and Nancy Turner for helpful comments on the paper.


  1. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615PubMedCrossRefGoogle Scholar
  2. Amin HJ, Zamora SA, McMillan DD et al (2002) Arginine supplementation prevents necrotizing enterocolitis in the premature infant. J Pediatr 140:425–431PubMedCrossRefGoogle Scholar
  3. Arana V, Paz Y, Gonzalez A et al (2004) Healing of diabetic foot ulcers in -arginine-treated patients. Biomed Pharmacother 58:588–597PubMedCrossRefGoogle Scholar
  4. Balercia G, Moretti S, Vignini A et al (2004) Role of nitric oxide concentrations on human sperm motility. J Androl 25:245–249PubMedGoogle Scholar
  5. Bassit RA, Curi R, Costa Rosa LFBP (2008) Creatine supplementation reduces plasma levels of pro-inflammatory cytokines and PGE2 after a half-ironman competition. Amino Acids 35:425–431PubMedCrossRefGoogle Scholar
  6. Baylis C (2008) Nitric oxide deficiency in chronic kidney disease. Am J Physiol Renal Physiol 294:F1–F9PubMedCrossRefGoogle Scholar
  7. Becker RM, Wu G, Galanko JA et al (2000) Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J Pediatr 137:785–793PubMedCrossRefGoogle Scholar
  8. Bellinghieri G, Santoro D, Mallamace A, Savica V (2006) l-arginine: a new opportunity in the management of clinical derangement in dialysis patients. J Renal Nutr 16:245–247CrossRefGoogle Scholar
  9. Böger RH, Bode-Böger SM, Brandes RP et al (1997) Dietary l-arginine reduces the progression of atherosclerosis in cholesterol-fed rabbits. Circulation 96:1282–1290PubMedGoogle Scholar
  10. Brosnan JT, Brosnan ME (2007) Creatine: endogenous metabolite, dietary, and therapeutic supplement. Annu Rev Nutr 27:241–261PubMedCrossRefGoogle Scholar
  11. Brunton JA, Bertolo RFP, Pencharz PB, Ball RO (1999) Proline ameliorates arginine deficiency during enteral but not parenteral feeding in neonatal pigs. Am J Physiol Endocrinol Metab 277:E223–E231Google Scholar
  12. Buhimschi IA, Saade GR, Chwalisz K, Garfield RE (1998) The nitric oxide pathway in pre-eclampsia: pathophysiological implications. Hum Reprod Update 4:25–42PubMedCrossRefGoogle Scholar
  13. Bush JA, Wu G, Suryawan A et al (2002) Somatotropin-induced amino acid conservation in pigs involves differential regulation of liver and gut urea cycle enzyme activity. J Nutr 132:59–67PubMedGoogle Scholar
  14. Campisi R, Czernin J, Schoder H et al (1999) l-Arginine normalizes coronary vasomotion in long-term smokers. Circulation 99:491–497PubMedGoogle Scholar
  15. Cardounel AJ, Cui H, Samouilov A et al (2007) Evidence for the pathophysiological role of endogenous methylarginines in regulation of endothelial NO production and vascular function. J Biol Chem 282:879–887PubMedCrossRefGoogle Scholar
  16. Castillo L, Chapman TE, Yu YM et al (1993) Dietary arginine uptake by the splanchnic region in adult humans. Am J Physiol Endocrinol Metab 265:E532–E539Google Scholar
  17. Clarkson P, Adams MR, Powe AJ et al (1996) Oral l-arginine improves endothelium-dependent dilation in hypercholesterolemic young adults. J Clin Invest 97:1989–1994PubMedCrossRefGoogle Scholar
  18. Creager MA, Gallagher SJ, Girerd XJ et al (1992) l-Arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J Clin Invest 90:1248–1253PubMedCrossRefGoogle Scholar
  19. Crenn P, Messing B, Cynober L (2008) Citrulline as a biomarker of intestinal failure due to enterocytes mass reduction. Clin Nutr 27:328–339PubMedCrossRefGoogle Scholar
  20. Davis TA, Nguyen HV, Garciaa-Bravo R et al (1994) Amino acid composition of human milk is not unique. J Nutr 124:1126–1132PubMedGoogle Scholar
  21. De Jonge WJ, Kwikkers KL, Te Velde AA et al (2002) Arginine deficiency affects early B cell maturation and lymphoid organ development in transgenic mice. J Clin Invest 110:1539–1548PubMedGoogle Scholar
  22. Dekaney CM, Wu G, Yin YL, Jaeger LA (2008) Regulation of ornithine aminotransferase gene expression and activity by all-trans retinoic acid in CaCo2 intestinal epithelial cells. J Nutr Biochem 19:674–681PubMedCrossRefGoogle Scholar
  23. Dillon EL, Knabe DA, Wu G (1999) Lactate inhibits citrulline and arginine synthesis from proline in pig enterocytes. Am J Physiol Gastrointest Liver Physiol 276:G1079–G1086Google Scholar
  24. Durante W, Johnson FK, Johnson RA (2007) Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clin Exp Pharmacol 34:906–911CrossRefGoogle Scholar
  25. Eremin O (1997) l-Arginine: biological aspects and clinical applications. RG Landes Company, GeorgetownGoogle Scholar
  26. Facchinetti F, Neri I, Genazzani AR (1996) l-Arginine infusion reduces preterm uterine contractions. J Perinat Med 24:283–285PubMedGoogle Scholar
  27. Facchinetti F, Saade GR, Neri I et al (2007) l-Arginine supplementation in patients with gestational hypertension: a pilot study. Hypertens Pregnancy 26:121–130PubMedCrossRefGoogle Scholar
  28. Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879PubMedCrossRefGoogle Scholar
  29. Flynn NE, Wu G (1996) An important role for endogenous synthesis of arginine in maintaining arginine homeostasis in neonatal pigs. Am J Physiol Regul Integr Comp Physiol 271:R1149–R1155Google Scholar
  30. Flynn NE, Wu G (1997) Enhanced metabolism of arginine and glutamine in enterocytes of cortisol-treated pigs. Am J Physiol Gastrointest Liver Physiol 272:G474–G480Google Scholar
  31. Flynn NE, Meininger CJ, Kelly K et al (1999) Glucocorticoids mediate the enhanced expression of intestinal type II arginase and argininosuccinate lyase in postweaning pigs. J Nutr 129:799–803PubMedGoogle Scholar
  32. Flynn NE, Meininger CJ, Haynes TE, Wu G (2002) The metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother 56:427–438PubMedCrossRefGoogle Scholar
  33. Flynn NE, Bird JG, Guthrie AS (2008) Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine. Amino Acids. doi: 10.1007/s00726-008-0206-7
  34. Frank JW, Escobar J, Hguyen HV et al (2007) Oral N-carbamylglutamate supplementation increases protein synthesis in skeletal muscle of piglets. J Nutr 137:315–319PubMedGoogle Scholar
  35. Fricke O, Baecker N, Heer M et al (2008) The effect of l-arginine administration on muscle force and power in postmenopausal women. Clin Physiol Funct Imaging 28:307–311PubMedCrossRefGoogle Scholar
  36. Fu WJ, Haynes TE, Kohli R et al (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721PubMedGoogle Scholar
  37. Gaur U, Roberts SC, Dalvi RP et al (2007) An effect of parasite-encoded arginase on the outcome of murine cutaneous Leishmaniasis. J Immunol 179:8446–8453PubMedGoogle Scholar
  38. Gobert AP, McGee DJ, Akhtar M et al (2001) Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc Natl Acad Sci USA 98:13844–13849PubMedCrossRefGoogle Scholar
  39. Gookin JL, Foster DM, Coccaro MR, Stauffer SH (2008) Oral delivery of l-arginine stimulates prostaglandin-dependent secretory diarrhea in Cryptosporidium parvum-infected neonatal piglets. J Pediatr Gastroenterol Nutr 46:139–146PubMedCrossRefGoogle Scholar
  40. Goud PT, Goud AP, Diamond MP et al (2008) Nitric oxide extends the oocyte temporal window for optimal fertilization. Free Radic Biol Med 45:453–459PubMedCrossRefGoogle Scholar
  41. Grasemann H, Kurtz F, Ratjen F (2006a) Inhaled l-arginine improves exhaled nitric oxide and pulmonary function in patients with cystic fibrosis. Am J Respir Crit Care Med 174:208–212PubMedCrossRefGoogle Scholar
  42. Grasemann H, Schwiertz R, Grasemann C et al (2006b) Decreased systemic bioavailability of l-arginine in patients with cystic fibrosis. Respir Res 7:1–7CrossRefGoogle Scholar
  43. Greenberg SS, Lancaster JR, Xie J et al (1997) Effects of NO synthase inhibitors, arginine-deficient diet, and amiloride in pregnant rats. Am J Physiol Regul Integr Comp Physiol 273:R1031–R1045Google Scholar
  44. Grillo MA, Lanza A, Colombatto S (2008) Transport of amino acids through the placenta and their role. Amino Acids 34:517–523PubMedCrossRefGoogle Scholar
  45. Grimble GK (2007) Adverse gastrointestinal effects of arginine and related amino acids. J Nutr 137:1693S–1701SPubMedGoogle Scholar
  46. Gualano B, Novaes RB, Artioli GG et al (2008) Effects of creatine supplementation on glucose tolerance and insulin sensitivity in sedentary healthy males undergoing aerobic training. Amino Acids 34:245–250PubMedCrossRefGoogle Scholar
  47. Han J, Liu YL, Fan W et al. (2008) Dietary l-arginine supplementation alleviates immunosuppression induced by cyclophosphamide in weaned pigs. Amino Acids. doi: 10.1007/s00726-08-0184-9
  48. Hayashi T, Juliet PAR, Matsui-Hirai H et al (2005) l-citrulline and l-arginine supplementation retards the progression of high-cholesterol-diet-induced atherosclerosis in rabbits. Proc Natl Acad Sci USA 102:13681–13686PubMedCrossRefGoogle Scholar
  49. He QH, Kong XF, Wu G et al. (2008) Metabolomic analysis of the response of growing pigs to dietary l-arginine supplementation. Amino Acids. doi: 10.1007/s00726-008-0192-9
  50. Heird WC, Nicholson JF, Driscoll JM et al (1972) Hyperammonemia resulting from intravenous alimentation using a mixture of synthetic l-amino acids: a preliminary report. J Pediatr 81:162–165PubMedCrossRefGoogle Scholar
  51. Helmbrecht GD, Farhat MY, Lochbaum L et al (1996) l-arginine reverses the adverse pregnancy changes induced by nitric oxide synthase inhibition in the rat. Am J Obstet Gynecol 175:800–805PubMedCrossRefGoogle Scholar
  52. Hnia K, Gayraud J, Hugon G et al (2008) l-Arginine decreases inflammation and modulates the nuclear factor-kB/matrix metalloproteinase cascade in Mdx muscle fibers. Am J Pathol 172:1509–1519PubMedCrossRefGoogle Scholar
  53. Holt LE Jr, Albanese AA (1944) Observations on amino acid deficiencies in man. Trans Assoc Am Physicians 58:143–156Google Scholar
  54. Hou ZP, Yin YL, Huang RL et al (2008) Rice protein concentrate partially replaces dried whey in the diet for early-weaned piglets and improves their growth performance. J Sci Food Agric 88:1187–1193CrossRefGoogle Scholar
  55. Hu CA, Khalil S, Zhaorigetu S et al (2008a) Human ∆1-pyrroline-5-carboxylate synthase: function and regulation. Amino Acids 35:665–672PubMedCrossRefGoogle Scholar
  56. Hu CA, Williams DB, Zhaorigetu S et al (2008b) Functional genomics and SNP analysis of human genes encoding proline metabolic enzymes. Amino Acids 35:655–664PubMedCrossRefGoogle Scholar
  57. Ito K, Chen J, Seshan SV et al (2005) Dietary arginine supplementation attenuates renal damage after relief of unilateralureteral obstruction in rats. Kidney Int 68:515–528PubMedCrossRefGoogle Scholar
  58. Jeyabalan G, Klune JR, Nakao A et al (2008) Arginase blockade protects against hepatic damage in warm ischemia-reperfusion. Nitric Oxide 19:29–35PubMedCrossRefGoogle Scholar
  59. Jobgen WS (2007) Dietary l-arginine supplementation reduces fat mass in diet-induced obese rats, PhD dissertation, Texas A&M University, College Station, TexasGoogle Scholar
  60. Jobgen WS, Fried SK, Fu WJ et al (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588PubMedCrossRefGoogle Scholar
  61. Kamada Y, Nagaretani H, Tamura S et al (2001) Vascular endothelial dysfunction resulting from l-arginine deficiency in a patient with lysinuric protein intolerance. J Clin Invest 108:717–724PubMedGoogle Scholar
  62. Kaul DK, Zhang XQ, Dasgupta T, Fabry ME (2008) Arginine therapy of transgenic-knockout sickle mice improves microvascular function by reducing non-nitric oxide vasodilator, hemolysis, and oxidative stress. Am J Physiol Heart Circ Physiol 295:H39–H47PubMedCrossRefGoogle Scholar
  63. Kepka-Lenhart D, Mistry SK, Wu G, Morris SM Jr (2000) Arginase I: a limiting factor for nitric oxide and polyamine synthesis by activated macrophages? Am J Physiol Regul Integr Comp Physiol 279:R2237–R2242PubMedGoogle Scholar
  64. Kim SW, Wu G (2004) Dietary arginine supplementation enhances the growth of milk-fed young pigs. J Nutr 134:625–630PubMedGoogle Scholar
  65. Kim SW, Wu G (2008) Regulatory role for amino acids in mammary gland growth and milk synthesis. Amino Acids. doi: 10.1007/s00726-008-0151-5
  66. Kim YJ, Parks HS, Lee HY et al (2006) Reduced l-arginine level and decreased placental eNOS activity in preeclampsia. Placenta 27:438–444PubMedCrossRefGoogle Scholar
  67. King DE, Mainous AG, Geesey ME (2008) Variation in l-arginine intake follow demographics and lifestyle factors that may impact cardiovascular disease risk. Nutr Res 28:21–24CrossRefPubMedGoogle Scholar
  68. Kohli R, Meininger CJ, Haynes TE et al (2004) Dietary l-arginine supplementation enhances endothelial nitric oxide synthesis in streptozotocin-induced diabetic rats. J Nutr 134:600–608PubMedGoogle Scholar
  69. Kwon H, Spencer TE, Bazer FW, Wu G (2003a) Developmental changes of amino acids in ovine fetal fluids. Biol Reprod 68:1813–1820PubMedCrossRefGoogle Scholar
  70. Kwon H, Wu G, Bazer FW, Spencer TE (2003b) Developmental changes in polyamine levels and synthesis in the ovine conceptus. Biol Reprod 69:1626–1634PubMedCrossRefGoogle Scholar
  71. Lassala A (2008) Arginine and fetal growth in ovine models of intrauterine growth restriction, PhD dissertation, Texas A&M University, College Station, TexasGoogle Scholar
  72. Lee J, Ryu H, Ferrante RJ et al (2003) Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc Natl Acad Sci USA 100:4843–4848PubMedCrossRefGoogle Scholar
  73. Li H, Meininger CJ, Hawker JR Jr, Haynes TE et al (2001) Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells. Am J Physiol Endocrinol Metab 280:E75–E82PubMedGoogle Scholar
  74. Li H, Meininger CJ, Kelly KA et al (2002) Activities of arginase I and II are limiting for endothelial cell proliferation. Am J Physiol Regul Integr Comp Physiol 282:R64–R69PubMedGoogle Scholar
  75. Li P, Yin YL, Li DF et al (2007) Amino acids and immune function. Br J Nutr 98:237–252PubMedCrossRefGoogle Scholar
  76. Li P, Kim SW, Li XL et al (2008a) Dietary supplementation with cholesterol and docosahexaenoic acid increases the activity of the arginine-nitric oxide pathway in tissues of young pigs. Nitric Oxide 19:259–265PubMedCrossRefGoogle Scholar
  77. Li P, Mai KS, Trushenski J, Wu G (2008b) New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids. doi: 10.1007/s00726-008-0171-1
  78. Li P, Kim SW, Li XL et al. (2008c) Dietary supplementation with cholesterol and docosahexaenoic acid affects concentrations of amino acids in tissues of young pigs. Amino Acids. doi: 10.1007/s00726-008-0196-5
  79. Ligthart-Melis GC, van de Poll MCG, Boelens PG et al (2008) Glutamine is an important precursor for de novo synthesis of arginine in humans. Am J Clin Nutr 87:1282–1289PubMedGoogle Scholar
  80. Lin CC, Tsai WC, Chen JY et al (2008) Supplements of l-arginine attenuate the effects of high-fat meal on endothelial function and oxidative stress. Int J Cardiol 127:337–341PubMedCrossRefGoogle Scholar
  81. Lubec B, Hoeger H, Kremser K et al (1996) Decreased tumor incidence and increased survival by one year oral low dose arginine supplementation in the mouse. Life Sci 58:2317–2325PubMedCrossRefGoogle Scholar
  82. Lucotti P, Setola E, Monti LD et al (2006) Beneficial effect of a long-term oral l-arginine treatment added to a hypocaloric diet and exercise training program in obese, insulin-resistant type 2 diabetic patients. Am J Physiol Endocrinol Metab 291:E906–E912PubMedCrossRefGoogle Scholar
  83. Lupi A, Tenni R, Rossi A et al (2008) Human prolidase and prolidase deficiency. Amino Acids 35:739–752PubMedCrossRefGoogle Scholar
  84. Ma Q, Williamson KE, O’Rourke D, Rowlands BJ (1999) The effects of l-arginine on crypt cell hyperproliferation in colorectal cancer. J Surg Res 81:181–188PubMedCrossRefGoogle Scholar
  85. Mannick JB (2007) Regulation of apoptosis by protein S-nitrosylation. Amino Acids 32:523–526PubMedCrossRefGoogle Scholar
  86. Marliss EB, Chevalier S, Gougeon R et al (2006) Elevations of plasma methylarginines in obesity and ageing are related to insulin sensitivity and rates of protein turnover. Diabetologia 49:351–359PubMedCrossRefGoogle Scholar
  87. Mateo RD, Wu G, Bazer FW et al (2007) Dietary l-arginine supplementation enhances the reproductive performance of gilts. J Nutr 137:652–656PubMedGoogle Scholar
  88. Mateo RD, Wu G, Moon HK et al (2008) Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets. J Anim Sci 86:827–835PubMedCrossRefGoogle Scholar
  89. McCaffrey MJ, Bose CL, Reiter PD, Stiles AD (1995) Effect of l-arginine infusion on infant with persistent pulmonary hypertension of the newborn. Biol Neonate 67:240–243PubMedCrossRefGoogle Scholar
  90. Moinard C, Nicolis I, Neveux N et al (2008) Dose-ranging effects of citrulline administration on plasma amino acids and hormonal patterns in healthy subjects: the citrudose pharmacokinetic study. Br J Nutr 99:855–862PubMedCrossRefGoogle Scholar
  91. Montanez R, Rodriguez-Caso C, Sanchez-Jimenez F, Medina MA (2008) In silico analysis of arginine catabolism as a source of nitric oxide or polyamines in endothelial cells. Amino Acids 34:223–229PubMedCrossRefGoogle Scholar
  92. Morris SM Jr (2007) Arginine metabolism: boundaries of our knowledge. J Nutr 137:1602S–1609SPubMedGoogle Scholar
  93. Morris CR, Kato GJ, Poijakovic M et al (2005) Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. JAMA 294:81–90PubMedCrossRefGoogle Scholar
  94. Nagasaka H, Yorifuji T, Murayama K et al (2006) Effect of arginine treatment on nutrition, growth and urea cycle function in seven Japanese boys with late-onset ornithine transcarbamylase deficiency. Eur J Pediatr 165:618–624PubMedCrossRefGoogle Scholar
  95. Nguyen RHN, Wilcox AJ, Skjaerven R, Baird DD (2007) Men’s body mass index and infertility. Hum Reprod 22:2488–2493PubMedCrossRefGoogle Scholar
  96. Nikolic J, Stojanovic I, Pavlovic R et al (2007) The role of l-arginine in toxic liver failure: interrelation of arginase, polyamine catabolic enzymes and nitric oxide synthase. Amino Acids 32:127–131PubMedCrossRefGoogle Scholar
  97. O’Quinn PR, Knabe DA, Wu G (2002) Arginine catabolism in lactating porcine mammary tissue. J Anim Sci 80:467–474PubMedGoogle Scholar
  98. Odenlund M, Holmqvist B, Baldetorp B et al. (2008) Polyamine synthesis inhibition induces S phase cell cycle arrest in vascular smooth muscle cells. Amino Acids. doi: 10.1007/s00726-008-0060-7
  99. Orlando GF, Wolf G, Engelmann M (2008) Role of neuronal nitric oxide synthase in the regulation of the neuroendocrine stress response in rodents: insights from mutant mice. Amino Acids 35:17–27PubMedCrossRefGoogle Scholar
  100. Peters H, Border WA, Noble NA (1999) l-Arginine supplementation increased mesangial cell injury and subsequent tissue fibrosis in experimental glomerulonephritis. Kidney Int 55:2264–2273PubMedCrossRefGoogle Scholar
  101. Phang JM, Donald SP, Pandhare J, Liu YM (2008) The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids 35:681–690PubMedCrossRefGoogle Scholar
  102. Pieper GM (1997) Acute amelioration of diabetic endothelial dysfunction with a derivative of the nitric oxide synthase cofactor, tetrahydrobiopterin. J Cardiovasc Pharmacol 29:8–15PubMedCrossRefGoogle Scholar
  103. Reid KM, Tsung A, Kaizu T et al (2007) Liver I/R injury is improved by the arginase inhibitor, N-ω-Hydroxy-Nor-L-arginine (Nor-NOHA). Am J Physiol Gastrointest Liver Physiol 292:G512–G517PubMedCrossRefGoogle Scholar
  104. Rhoads JM, Chen W, Gookin J et al (2004) l-Arginine stimulates intestinal cell migration through a focal adhesion kinase-dependent mechanism. Gut 53:514–522PubMedCrossRefGoogle Scholar
  105. Rhoads JM, Plunkett E, Galanko J et al (2005) Serum citrulline correlates with enteral tolerance and bowel length in infants with short bowel syndrome. J Pediatr 146:542–547PubMedCrossRefGoogle Scholar
  106. Rhoads JM, Corl BA, Harrell R et al (2007) Intestinal ribosomal p70s6 k signaling is increased in piglet rotavirus enteritis. Am J Physiol Gastrointest Liver Physiol 292:G913–G922PubMedCrossRefGoogle Scholar
  107. Rhoads JM, Niu XM, Surendran S et al (2008) Arginine stimulates intestinal epithelial cell migration via a mechanism requiring both nitric oxide and p70s6 k signaling. J Nutr 138:1652–1657PubMedGoogle Scholar
  108. Roberts JM (1999) Objective evidence of endothelial dysfunction in preeclampsia. Am J Kidney Dis 33:992–997PubMedCrossRefGoogle Scholar
  109. Romero JR, Suzuka SM, Nagel RL, Fabry ME (2002) Arginine supplementation of sickle transgenic mice reduces red cell density and Gardos channel activity. Blood 99:1103–1108PubMedCrossRefGoogle Scholar
  110. Rytlewski K, Olszanecki R, Lauterbach R et al (2006) Effects of oral l-arginine on the foetal condition and neonatal outcome in preeclampsia: a preliminary report. Basic Clin Pharmacol Toxicol 99:146–152PubMedCrossRefGoogle Scholar
  111. Rytlewski K, Olszanecki R, Lauterbach R et al (2008) Effects of oral l-arginine on the pulsatility indices of umbilical artery and middle cerebral artery in preterm labor. Eur J Obstet Gynecol Reprod Biol 138:23–28PubMedCrossRefGoogle Scholar
  112. Satriano J (2007) Kidney growth, hypertrophy and the unifying mechanism of diabetic complications. Amino Acids 33:331–339PubMedCrossRefGoogle Scholar
  113. Shantz LM, Levin VA (2007) Regulation of ornithine decarboxylase during oncogenic transformation: mechanisms and therapeutic potential. Amino Acids 33:213–223PubMedCrossRefGoogle Scholar
  114. Shao A, Hathcock JN (2008) Risk assessment for the amino acids taurine, l-glutamine and l-arginine. Regul Toxicol Pharmacol 50:376–399PubMedCrossRefGoogle Scholar
  115. Shi W, Meininger CJ, Haynes TE et al (2004) Regulation of tetrahydrobiopterin synthesis and bioavailability in endothelial cells. Cell Biochem Biophys 41:415–433PubMedCrossRefGoogle Scholar
  116. Siasos G, Tousoulis D, Vlachopoulos C et al (2008) Short-term treatment with l-arginine prevents the smoking-induced impairment of endothelial function and vascular elastic properties in young individuals. Int J Cardiol 126:394–399PubMedCrossRefGoogle Scholar
  117. Snyderman SE, Boyer A, Holt LE Jr (1959) The arginine requirement of the infant. AMA J Dis Child 97:192–195PubMedGoogle Scholar
  118. Sotgia S, Zinellu A, Pinna GA et al (2008) A new selective pre-column ninhydrin-based derivatization for a RP-HPLC determination of plasma asymmetric dimethyl-l-arginine (ADMA) by fluorescence detection. Amino Acids 34:677–682PubMedCrossRefGoogle Scholar
  119. Starbuck MJ, Dailey RA, Inskeep EK (2004) Factors affecting retention of early pregnancy in dairy cattle. Anim Reprod Sci 84:27–39PubMedCrossRefGoogle Scholar
  120. Tan BE, Li XG, Kong XF et al. (2008a) Dietary l-arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids. doi: 10.1007/s00726-008-0155-1
  121. Tan BE, Yin YL, Liu ZQ et al. (2008b) Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids. doi: 10.1007/s00726-008-0148-0
  122. Tanimura J (1967) Studies on arginine in human semen. Part II. the effects of medication with l-arginine-HCl on male infertility. Bull Osaka Med School 13:84–89Google Scholar
  123. Tiboni GM, Giampietro F (2000) Inhibition of nitric oxide synthesis causes preterm delivery in the mouse. Hum Reprod 15:838–1842CrossRefGoogle Scholar
  124. van de Poll MCG, Siroen MPC, van Leeuwen PAM et al (2007) Interorgan amino acid exchange in humans: consequences for arginine and citrulline metabolism. Am J Clin Nutr 85:167–172PubMedGoogle Scholar
  125. Veleva Z, Tiitinen A, Vilska S et al (2008) High and low BMI increases the risk of miscarriage after IVF/ICSI and FET. Hum Reprod 23:878–884PubMedCrossRefGoogle Scholar
  126. Vosatka RJ, Hassoun PM, Harvey-Wilkes KB (1998) Dietary l-arginine prevents fetal growth restriction in rats. Am J Obstet Gynecol 178:242–246PubMedCrossRefGoogle Scholar
  127. Wakabayashi Y, Yamada E, Yoshida T, Takahashi H (1994) Deficiency of endogenous arginine synthesis provokes hypertension by exhausting substrate arginine for nitric oxide synthesis. Biochem Biophys Res Commun 205:1391–1398PubMedCrossRefGoogle Scholar
  128. Wang WW, Qiao SY, Li DF (2008) Amino acids and gut function. Amino Acids. doi:  10.1007/s00726-008-0152-4
  129. Wascher TC, Graier WF, Dittrich P et al (1997) Effects of low-dose l-arginine on insulin-mediated vasodilation and insulin sensitivity. Eur J Clin Invest 27:690–695PubMedCrossRefGoogle Scholar
  130. Waugh WH, Daeschner CW, Files BA et al (2001) Oral citrulline as arginine precursor may be beneficial in sickle cell disease: early phase two results. J Natl Med Assoc 93:363–371PubMedGoogle Scholar
  131. Wei LH, Wu G, Morris SM Jr, Ignarro LJ (2001) Elevated arginase I expression in rat aortic smooth muscle cells increases cell proliferation. Proc Natl Acad Sci USA 98:9260–9264PubMedCrossRefGoogle Scholar
  132. Wei LH, Yang Y, Wu G, Ignarro LJ (2008) IL-4 and IL-13 upregulate ornithine decarboxylase expression by PI3 K and MAP kinase pathways in vascular smooth muscle cells. Am J Physiol Cell Physiol 294:C1198–C1205PubMedCrossRefGoogle Scholar
  133. Wessagowit V, Mallipeddi R, McGrath JA, South AP (2004) Altered expression of l-arginine metabolism pathway genes in chronic wounds in recessive dystrophic epidermolysis bullosa. Clin Exp Dermatol 29:664–668PubMedCrossRefGoogle Scholar
  134. Witte MB, Barbul A (2008) Arginine physiology and its implications for wound healing. Wound Repair Regen 11:419–423CrossRefGoogle Scholar
  135. Wood KC, Hsu LL, Gladwin MT (2008) Sickle cell disease vasculopathy: a state of nitric oxide resistance. Free Radic Biol Med 44:1506–1528PubMedCrossRefGoogle Scholar
  136. Wu G (1995) Urea synthesis in enterocytes of developing pigs. Biochem J 312:717–723PubMedGoogle Scholar
  137. Wu G (1997) Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol Gastrointest Liver Physiol 272:G1382–G1390Google Scholar
  138. Wu G, Brosnan JT (1992) Macrophages can convert citrulline into arginine. Biochem J 281:45–48PubMedGoogle Scholar
  139. Wu G, Knabe DA (1994) Free and protein-bound amino acids in sow’s colostrum and milk. J Nutr 124:2437–2444PubMedGoogle Scholar
  140. Wu G, Knabe DA (1995) Arginine synthesis in enterocytes of neonatal pigs. Am J Physiol Regul Integr Comp Physiol 269:R621–R629Google Scholar
  141. Wu G, Meininger CJ (1993) Regulation of l-arginine synthesis from l-citrulline by l-glutamine in endothelial cells. Am J Physiol Heart Circ Physiol 265:H1965–H1971Google Scholar
  142. Wu G, Meininger CJ (2000) Arginine nutrition and cardiovascular function. J Nutr 130:2626–2629PubMedGoogle Scholar
  143. Wu G, Meininger CJ (2002) Regulation of nitric oxide synthesis by dietary factors. Annu Rev Nutr 22:61–86PubMedCrossRefGoogle Scholar
  144. Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17PubMedGoogle Scholar
  145. Wu G, Bazer FW, Tuo W, Flynn SP (1996a) Unusual abundance of arginine and ornithine in porcine allantoic fluid. Biol Reprod 54:1261–1265PubMedCrossRefGoogle Scholar
  146. Wu G, Knabe DA, Flynn NE et al (1996b) Arginine degradation in developing porcine enterocytes. Am J Physiol Gastrointest Liver Physiol 271:G913–G919Google Scholar
  147. Wu G, Flynn NE, Flynn SP et al (1999) Dietary protein or arginine deficiency impairs constitutive and inducible nitric oxide synthesis by young rats. J Nutr 129:1347–1354PubMedGoogle Scholar
  148. Wu G, Flynn NE, Knabe DA (2000a) Enhanced intestinal synthesis of polyamines from proline in cortisol-treated piglets. Am J Physiol Endocrinol Metab 279:E395–E402PubMedGoogle Scholar
  149. Wu G, Flynn NE, Knabe DA, Jaeger LA (2000b) A cortisol surge mediates the enhanced polyamine synthesis in porcine enterocytes during weaning. Am J Physiol Regul Integr Comp Physiol 279:R554–R559PubMedGoogle Scholar
  150. Wu G, Meininger CJ, Kelly K et al (2000c) A cortisol surge mediates the enhanced expression of pig intestinal pyrroline-5-carboxylate synthase during weaning. J Nutr 130:1914–1919PubMedGoogle Scholar
  151. Wu G, Bazer FW, Cudd TA et al (2004a) Maternal nutrition and fetal development. J Nutr 134:2169–2172PubMedGoogle Scholar
  152. Wu G, Jaeger LA, Bazer FW, Rhoads JM (2004b) Arginine deficiency in premature infants: biochemical mechanisms and nutritional implications. J Nutr Biochem 15:442–451PubMedCrossRefGoogle Scholar
  153. Wu G, Knabe DA, Kim SW (2004c) Arginine nutrition in neonatal pigs. J Nutr 134:2390S–2783SGoogle Scholar
  154. Wu G, Bazer FW, Hu J et al (2005) Polyamine synthesis from proline in the developing porcine placenta. Biol Reprod 72:842–850PubMedCrossRefGoogle Scholar
  155. Wu G, Bazer FW, Wallace JM, Spencer TE (2006) Intrauterine growth retardation: implications for the animal sciences. J Anim Sci 84:2316–2337PubMedCrossRefGoogle Scholar
  156. Wu G, Bazer FW, Cudd TA et al (2007a) Pharmacokinetics and safety of arginine supplementation in animals. J Nutr 137:1673S–1680SPubMedGoogle Scholar
  157. Wu G, Bazer FW, Kim SW (2007b) New developments in amino acid research. In: Rosati A, Tewolde A, Mosconi C et al (eds) Animal Production and Animal Science Worldwide: WAAP Book of the Year 2006. Wageningen Academic Publishers, The Netherlands, pp 299–315Google Scholar
  158. Wu G, Bazer FW, Davis TA et al (2007c) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22CrossRefGoogle Scholar
  159. Wu G, Collins JK, Perkins-Veazie P et al (2007d) Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr 137:2680–2685PubMedGoogle Scholar
  160. Wu G, Bazer FW, Datta S et al (2008a) Proline metabolism in the conceptus: implications for fetal growth and development. Amino Acids 35:691–702PubMedCrossRefGoogle Scholar
  161. Wu G, Bazer FW, Datta S et al (2008b) Intrauterine growth retardation in livestock: implications, mechanisms and solutions. Arch Fur Tierzucht-Arch Anim Breed 51(Special Issue 1):4–10Google Scholar
  162. Wu G, Meininger CJ (2009) Nitric oxide and vascular insulin resistance. BioFactors (in press)Google Scholar
  163. Xiao XM, Li LP (2005) l-arginine treatment for asymmetric fetal growth restriction. Int J Gynecol Obstet 88:15–18CrossRefGoogle Scholar
  164. Yamasaki K, Edington HDJ, McClosky C et al (1998) Reversal of impaired wound repair in iNOS-deficient mice by topical adenoviral-mediated iNOS gene transfer. J Clin Invest 101:967–971PubMedCrossRefGoogle Scholar
  165. Yao K, Yin YL, Chu WY et al (2008) Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 138:867–872PubMedGoogle Scholar
  166. Yeo TW, Lampah DA, Gitawati R et al (2007) Impaired nitric oxide bioavailability and l-arginine reversible endothelial dysfunction in adults with falciparum malaria. J Exp Med 204:2693–2704PubMedCrossRefGoogle Scholar
  167. Yu YM, Ryan CM, Castillo L et al (2001) Arginine and ornithine kinetics in severely burned patients: increased rate of arginine disposal. Am J Physiol Endocrinol Metab 280:E509–E517PubMedGoogle Scholar
  168. Zeng XF, Wang FL, Fan X et al (2008) Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats. J Nutr 138:1421–1425PubMedGoogle Scholar
  169. Zou CH, Shao JH (2008) Role of adipocytokines in obesity-associated insulin resistance. J Nutr Biochem 19:277–286PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Guoyao Wu
    • 1
    • 2
    Email author
  • Fuller W. Bazer
    • 1
  • Teresa A. Davis
    • 3
  • Sung Woo Kim
    • 4
  • Peng Li
    • 1
  • J. Marc Rhoads
    • 5
  • M. Carey Satterfield
    • 1
  • Stephen B. Smith
    • 1
  • Thomas E. Spencer
    • 1
  • Yulong Yin
    • 2
  1. 1.Department of Animal ScienceTexas A&M UniversityCollege StationUSA
  2. 2.Institute of Subtropical Agriculture, The Chinese Academy of SciencesChangshaChina
  3. 3.Department of PediatricsBaylor College of MedicineHoustonUSA
  4. 4.North Carolina State UniversityRaleighUSA
  5. 5.Department of PediatricsUniversity of Texas Medical School at HoustonHoustonUSA

Personalised recommendations