Amino Acids

, Volume 37, Issue 1, pp 43–53

New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds

Review Article


Recent evidence shows that some amino acids and their metabolites are important regulators of key metabolic pathways that are necessary for maintenance, growth, feed intake, nutrient utilization, immunity, behavior, larval metamorphosis, reproduction, as well as resistance to environmental stressors and pathogenic organisms in various fishes. Therefore, conventional definitions on essential and nonessential amino acids for fish are challenged by numerous discoveries that taurine, glutamine, glycine, proline and hydroxyproline promote growth, development, and health of aquatic animals. On the basis of their crucial roles in cell metabolism and physiology, we anticipate that dietary supplementation with specific amino acids may be beneficial for: (1) increasing the chemo-attractive property and nutritional value of aquafeeds with low fishmeal inclusion; (2) optimizing efficiency of metabolic transformation in juvenile and sub-adult fishes; (3) surpressing aggressive behaviors and cannibalism; (4) increasing larval performance and survival; (5) mediating timing and efficiency of spawning; (6) improving fillet taste and texture; and (7) enhancing immunity and tolerance to environmental stresses. Functional amino acids hold great promise for development of balanced aquafeeds to enhance the efficiency and profitability of global aquaculture production.


Amino acids Fish Health Growth Aquafeeds Aquaculture 



Amino acids




Branched-chain amino acids






Nitric oxide


Nitric oxide synthase








  1. Aas-Hansen O, Vijayan MM, Johnsen HK, Cameron C, Jorgensen EH (2005) Resmoltification in wild, anadromous Arctic char (Salvelinus etabol): a survey of osmoregulatory, metabolic, and endocrine changes preceding annual seaward migration. Can J Fish Aquat Sci 62:195–204CrossRefGoogle Scholar
  2. Aksnes A, Mundheim H, Toppe J, Albrektsen S (2008) The effect of dietary hydroxyproline supplementation on salmon (Salmo salar L.) fed high plant protein diets. Aquaculture 275:242–249CrossRefGoogle Scholar
  3. Amano M, Iigo M, Ikuta K, Kitamura S, Okuzawa K, Yamada H, Yamamori K (2004) Disturbance of plasma melatonin profile by high dose melatonin administration inhibits testicular maturation of precocious male masu salmon. Zool Sci 24:79–85CrossRefGoogle Scholar
  4. Anderson PM, Broderius MA, Fong KC, Tsui KNT, Chew SF, Ip YK (2002) Glutamine synthetase expression in liver, muscle, stomach and intestine of Bostrichthys sinensis in response to exposure to a high exogenous ammonia concentration. J Exp Biol 205:2053–2065PubMedGoogle Scholar
  5. Aragão C, Corte-Real J, Costas B, Dinis MT, Conceição LEC (2008) Stress response and changes in amino acid requirements in Senegalese sole (Solea senegalensis Kaup 1858). Amino Acids 34:143–158PubMedCrossRefGoogle Scholar
  6. Bhattacharya S, Chattoraj A, Maitra SK (2007) Melatonin in the regulation of annual testicular events in carp catla catla: evidence from the studies on the effects of exogenous melatonin, continuous light, and continuous darkness. Chronobiol Int 24:629–650PubMedCrossRefGoogle Scholar
  7. Boonanuntanasarn S, Yoshizaki G, Iwai K, Takeuchi T (2004) Molecular cloning, gene expression in albino mutants and gene knockdown studies of tyrosinase mRNA in rainbow trout. Pigment Cell Res 17:413–421PubMedCrossRefGoogle Scholar
  8. Bordieri L, di Patti MCB, Miele R, Cioni C (2005) Partial cloning of neuronal nitric oxide synthase (nNOS) cDNA and regional distribution of nNOS mRNA in the central nervous system of the Nile tilapia Oreochromis niloticus. Mol Brain Res 142:123–133PubMedCrossRefGoogle Scholar
  9. Britz PJ, Bacela N, Hecht T (1997) Can crystalline arginine be used to quantify the arginine requirement of abalone? Aquaculture 157:95–105CrossRefGoogle Scholar
  10. Buentello JA, Gatlin DM (1999) Nitric oxide production in activated macrophages from channel catfish (Ictalurus punctatus): influence of dietary arginine and culture media. Aquaculture 179:513–521CrossRefGoogle Scholar
  11. Buentello JA, Gatlin DM (2000) The dietary arginine requirement of channel catfish (Ictalurus punctatus) is influenced by endogenous synthesis of arginine from glutamic acid. Aquaculture 188:311–321CrossRefGoogle Scholar
  12. Buentello JA, Gatlin DM (2001) Effects of elevated dietary arginine on resistance of channel catfish to exposure to Edwardsiella ictaluri. J Aquat Animal Health 13:194–201CrossRefGoogle Scholar
  13. Buentello JA, Gatlin DM (2002) Preliminary observations on the effects of water hardness on free taurine and other amino acids in plasma and muscle of channel catfish. North Am J Aquac 64:95–102CrossRefGoogle Scholar
  14. Bystriansky JS, Frick NT, Ballantyne JS (2007) Intermediary metabolism of Arctic char Salvelinus etabol during short-term salinity exposure. J Exp Biol 210:1971–1985PubMedCrossRefGoogle Scholar
  15. Csapó J, Varga-Visi Ė, Lóki K, Albert CS, Salamon SZ (2008) The influence of extrusion on loss and racemization of amino acids. Amino Acids 34:287–292PubMedCrossRefGoogle Scholar
  16. Chang CC, Wu ZR, Kuo CM, Cheng W (2007) Dopamine depress immunity of tiger shrimp Penaeus Monodon. Fish Shellfish Immunol 24:24–33CrossRefGoogle Scholar
  17. Cheng ZJ, Hardy RW, Usry JL (2003) Plant protein ingredients with lysine supplementation reduce dietary protein levels in rainbow trout Oncorhynchus mykiss diets, and reduce ammonia nitrogen and phosphorus excretion. Aquaculture 218:553–565CrossRefGoogle Scholar
  18. Choo P, Smith TK, Cho CY, Ferguson HW (1991) Dietary excesses of leucine influence growth and body composition of rainbow trout. J Nutr 121:1932–1939PubMedGoogle Scholar
  19. Cowey CB, Cho CY (1992) Failure of dietary putrescine to enhance the growth of rainbow trout (Oncorhynnchus mykiss). Can J Fish Aquat Sci 94:2473–2496Google Scholar
  20. Dabrowski K, Terjesen BF, Zhang YF, Phang JM, Lee KJ (2005) A concept of dietary dipeptides: a step to resolve the problem of amino acid availability in the early life of vertebrates. J Exp Biol 208:2885–2894PubMedCrossRefGoogle Scholar
  21. Damasceno-Oliveira A, Fernandez-Duran B, Goncalves J, Serrao P, Soares-da-Silva P, Reis-Henriques MA, Coimbra J (2007) Effects of cyclic hydrostatic pressure on the brain biogenic amines concentrations in the flounder, Platichthys flesus. Gen Comp Endocrinol 153:385–389PubMedCrossRefGoogle Scholar
  22. Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 8:872–879CrossRefGoogle Scholar
  23. Førde-Skjærvik O, Skjærvik O, Mørkøre T, Thomassen MS, Rørvik KA (2006) Dietary influence on quality of farmed Atlantic cod (Gadus morhua): effect on glycolysis and buffering capacity in white muscle. Aquaculture 252:409–420CrossRefGoogle Scholar
  24. Garg SK (2007) Effect of oral administration of l–thyroxine (T4) on growth performance, digestibility, and nutrient retention in Channa punctatus (Bloch) and Heteropneustes fossilis (Bloch). Fish Biochem Physiol 33:347–358CrossRefGoogle Scholar
  25. Gaylord TG, Barrows FT, Teague AM, Johansen KA, Overturf KE, Shephed B (2007) Supplementation of taurine and methionine to all-plant protein diets for rainbow trout (Oncorhynchus mykiss). Aquaculture 269:514–524CrossRefGoogle Scholar
  26. Gouillou-Coustans MF, Fournier V, Métailler R, Vachot C, Desbruyères E, Huelvan C, Moriceau J, Le Delliou H, Kaushik SJ (2002) Dietary arginine degradation is a major pathway in ureagenesis in turbot (Psetta Maxima). Comp Biochem Physiol A 132:305–319CrossRefGoogle Scholar
  27. Galli F (2007) Amino acid and protein modification by oxygen and nitrogen species. Amino Acids 32:497–499CrossRefGoogle Scholar
  28. Grillo MA, Colombatto S (2007) S-Adenosylmethionine and radical-based catalysis. Amino Acids 32:197–202PubMedCrossRefGoogle Scholar
  29. Harpaz S (2005) l-Carnitine and its attributed functions in fish culture and nutrition—a review. Aquaculture 249:3–21CrossRefGoogle Scholar
  30. Höglund E, Sorensen C, Bakke MJ, Nilsson GE, Øverli Ø (2007) Attenuation of stress-induced anorexia in brown trout (Salmo trutta) by pre-treatment with dietary l-tryptophan. Br J Nutr 97:786–789PubMedCrossRefGoogle Scholar
  31. Hseu JR, Lu FI, Su HM, Wang LS, Tsai CL, Hwang PP (2003) Effect of exogenous tryptophan on cannibalism, survival and growth in juvenile grouper, Epinephelus coioides. Aquaculture 218:251–263CrossRefGoogle Scholar
  32. Hyndman KA, Choe KP, Havird JC, Rose RE, Piermarini PM, Evans DH (2006) Neuronal nitric oxide synthase in the gill of killifish (Fundulus heteroclitus). Comp Biochem Physiol B 144:510–519PubMedCrossRefGoogle Scholar
  33. Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588PubMedCrossRefGoogle Scholar
  34. Keembiyehetty CN, Gatlin DM (1995) Evaluation of different sulfur-compounds in the diet of juvenile sunshine bass (Morone chrysops × M. saxatillis). Comp Biochem Physiol A 112:155–159CrossRefGoogle Scholar
  35. Kim SK, Takeuchi T, Yokoyama M, Murata Y (2003) Effect of dietary supplementation with taurine, β-alanine, and GABA on the growth of juvenile and fingerling Japanese flounder Paralichthys olivaceus. Fish Sci 69:242–248CrossRefGoogle Scholar
  36. Kim SK, Matsunari H, Takeuchi T, Yokoyama M, Furuita H, Murata Y, Goto T (2008) Comparison of taurine biosynthesis ability between juveniles of Japanese flounder and common carp. Amino Acids 35:161–168PubMedCrossRefGoogle Scholar
  37. Lepage O, Tottmar O, Winberg S (2003) Elevated dietary intake of l-tryptophan counteracts the stress-induced elevation of plasma cortisol in rainbow trout (Oncorhynchus mykiss). J Exp Biol 205:3679–3687Google Scholar
  38. Li P, Gatlin DM (2006) Nucleotide nutrition in fish: current knowledge and future applications. Aquaculture 251:141–152CrossRefGoogle Scholar
  39. Li P, Gatlin DM (2007) Evaluation of dietary supplementation of β-hydroxy-β-methylbutyrate for hybrid striped bass Morone chrysops × Morone saxatilis. J Appl Aquac 19:77–88CrossRefGoogle Scholar
  40. Li P, Yin Y, Li D, Kim WK, Wu G (2007) Amino acids and immune function. Br J Nutr 98:237–252PubMedCrossRefGoogle Scholar
  41. Lin Y, Zhou X (2006) Dietary glutamine supplementation improves structure and function of intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture 256:389–394CrossRefGoogle Scholar
  42. Mai K, Zhang L, Ai Q, Duan Q, Zhang C, Li H, Wan J, Liufu Z (2006a) Dietary lysine requirement of juvenile seabass (Lateolabrax japonicas). Aquaculture 258:535–542CrossRefGoogle Scholar
  43. Mai K, Wan J, Ai Q, Xu W, Liufu Z, Zhang L, Zhang C, Li H (2006b) Dietary methionine requirement of juvenile yellow croaker Pseudosciaena crocea R. Aquaculture 251:564–572CrossRefGoogle Scholar
  44. Mannick JB (2007) Regulation of apoptosis by protein S-nitrosylation. Amino Acids 32:523–526PubMedCrossRefGoogle Scholar
  45. Milligan CL (1997) The role of cortisol in amino acid mobilization and metabolism following exhaustive exercise in rainbow trout (Oncorhychus mykiss Walbaum). Fish Physiol Biochem 16:119–128CrossRefGoogle Scholar
  46. Mommsen TP, French CJ, Hochachka PW (1980) Sites and patterns of protein and amino acid utilization during the spawning migration of salmon. Can J Zool 58:1785–1799CrossRefGoogle Scholar
  47. Mommsen TP, Moon TW, Plisetskaya EM (2001) Effects on arginine on pancreatic hormones and hepatic metabolism in rainbow trout. Physiol Biochem Zool 74:668–678PubMedCrossRefGoogle Scholar
  48. Morse DE, Hooker N, Duncan H, Jensen L (1979) γ-Aminobutyric acid, a neurotransmitter, induces planktonic abalone larvae to settle and begin metamorphosis. Science 204:407PubMedCrossRefGoogle Scholar
  49. Murai T, Akiyama T, Ogata H, Hirasawa Y, Nose T (1982) Effect of coating amino acids with casein supplemented to gelatin diet on plasma free amino acids of carp. Bull Jpn Sot Sci Fish 48:03–710Google Scholar
  50. Nakashima K, Yakabe Y, Ishida A, Yamazaki M, Abe H (2007) Suppression of myofibrillar proteolysis in chick skeletal muscles by α-ketoisocaproate. Amino Acids 33:499–503PubMedCrossRefGoogle Scholar
  51. Ogata HY (2002) Muscle buffering capacity of yellowtail fed diets supplemented with crystalline histidine. J Fish Biol 61:1504–1512CrossRefGoogle Scholar
  52. Olin T, Bergstrom E, Jungvid H, Vonderdecken A (1992) Effect of dietary keto acids on intermediary metabolism of nutrients in Atlantic salmon (Salmo salar) during 17-β estrodial induced vitellogenin synthesis. Acta Agric Scandinavica A 42:246–253Google Scholar
  53. Omura Y, Inagaki M (2000) Immunocytochemical localization of taurine in the fish retina under light and dark adaptations. Amino Acids 19:593–604PubMedCrossRefGoogle Scholar
  54. Ou DY, Li DF, Cao YH, Li XL, Yin JD, Qiao SY, Wu G (2007) Dietary supplementation with zinc oxide decreases expression of the stem cell factor in the small intestine of weanling pigs. J Nutr Biochem 18:820–826PubMedCrossRefGoogle Scholar
  55. Péres A, Cahu CL, Zambonino-Infante JL (1997) Dietary spermine supplementation induces intestinal maturation in sea bass (Dicentrarchus labrax) larvae. Fish Biochem Physiol 16:479–485CrossRefGoogle Scholar
  56. Phang JM, Donald SP, Pandhare J, Liu Y (2008) The metabolism of proline, as a stress substrate, modulates carcinogenic pathways. Amino Acids. doi:10.1007/s00726-008-0063-4
  57. Pinto W, Figueira L, Dinis MT, Aragão C (2008) How does fish metamorphosis affect aromatic amino acid metabolism? Amino Acids doi:10.1007/s00726-008-0045-6
  58. Powell EN, Kasschau M, Chen E, Koenig M, Pecon J (1982) Changes in free amino acid pool during environmental stress in the gill of the oyster Crassostrea Virginica. Comp Biochem Physiol 71A:591–598CrossRefGoogle Scholar
  59. Powell MD, Ransome J, Barney M, Duijf RMM, Flik G (2007) Effect of dietary inclusion of n-acetyl cysteine on mucus viscosity and susceptibility of rainbow trout, Oncorhynchus mykiss, and Atlantic salmon, Salmo salar, to amoebic gill disease. J World Aquac Soc 38:435–442CrossRefGoogle Scholar
  60. Riley WW, Higgs DA, Dosanjh BS, Eales JG (1996) Influence of dietary arginine and glycine content on thyroid function and growth of juvenile rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac Nutr 2:235–242CrossRefGoogle Scholar
  61. Rubio VC, Sánchez-Vázquez FJ, Madrid JA (2006) Oral serotonin administration affects the quantity and the quality of macronutrient selection in European sea bass (Dicentrarchus labrax L.). Physiol Behav 87:7–15PubMedCrossRefGoogle Scholar
  62. Saavedra M, Conceição LEC P, Pousão-Ferreira P, Dinis MT (2008) Metabolism of tryptophan, methionine and arginine in Diplodus sargus larvae fed rotifers: effect of amino acid supplementation. Amino Acids 35:59–64PubMedCrossRefGoogle Scholar
  63. Salze G, Craig SR, Schwarz M, McLean E (2008) Novel live feed enrichments beneficially impact digestive ongogeny in larval cobia Rachycentron candadum. Abstract of Aquaculture America 08, p 337Google Scholar
  64. Shamushaki VAJ, Kasumyan AO, Abedian A, Abtahi B (2007) Behavioural responses of the Persian sturgeon (Acipenser persicus) juveniles to free amino acid solutions. Mar Fresh Behav Physiol 40:219–224CrossRefGoogle Scholar
  65. Silvia G, Antonio UA, Francisco U, Georgina H (2002) Ammonia efflux rates and free amino acid levels in Litopenaeus vannamei postlarvae during sudden salinity changes. Aquaculture 233:573–581CrossRefGoogle Scholar
  66. Siwicki AK, Morand M, Fuller JC, Nissen S, Goryczko K, Ostaszewski P, Kazun K, Glompski E (2003) Influence of feeding the leucine etabolite β-hydroxy β-methyl butyrate (HMB) on the non-specific cellular and humoral defence mechanisms of rainbow trout (Oncorhynchus mykiss). J Appl Ichthyol 19:44–48CrossRefGoogle Scholar
  67. Snyder GS, Gaylord TG, Barrows FT, Hardy RW (2008) Carnosine supplementation on an all-plant protein diet for rainbow trout Oncorhynchus mykiss. Abstract of Aquaculture America 08, p 369Google Scholar
  68. Sunde J, Taranger GL, Rungruangsak-Torrissen K (2001) Digestive protease activities and free amino acids in white muscle as indicators for feed conversion efficiency and growth rate in Atlantic salmon (Salmo salar L.). Fish Physiol Biochem 25:335–345CrossRefGoogle Scholar
  69. Szebedinszky C, Gilmour KM (2002) The buffering power of plasma in brown bullhead (Ameiurus nebulosus). Comp Biochem Physiol B 131:171–183PubMedCrossRefGoogle Scholar
  70. Takeuchi T (2007) Amino acids, Peptides. In: Nakagawa H, Sato M, Gatlin DM (eds) Dietary supplements for the health and quality of cultured fish. CAB International, Oxon, UK, pp 47–63Google Scholar
  71. Tapia-Salazar M, Cruz-Suarez LE, Ricque-Marie D, Pike IH, Smith TK, Harris A, Nygard E, Opstvedt J (2004) Effect of fishmeal made of stale or fresh herring and added crystalling biogenic amines on growth and survival of blue shrimp Litopenaeus stylirostris fed practical diets. Aquaculture 242:437–453CrossRefGoogle Scholar
  72. Toyohara H, Ito K, Touhata K, Kinoshita M, Kubota S, Sato K, Ohtsuki K, Sakaguchi M (1997) Effect of maturation on the free or bound forms of hydroxyproline of ayu muscle. Fish Sci 63:843–844Google Scholar
  73. Trushenski JT, Kasper CS, Kohler CC (2006) Challenges and opportunities in finfish nutrition. North Am J Aquac 68:122–140CrossRefGoogle Scholar
  74. Vijayan MM, Mommsen TP, Glémet HC, Moon TW (1996) Metabolic effects of cortisol treatment in marine teleost, the sea raven. J Exp Biol 199:1509–1514PubMedGoogle Scholar
  75. Wilson RP (2002) Protein and amino acids. In: Halver JE, Hardy RW (eds) Fish Nutrition, 3rd version. Elsevier Science, San Diego, USA, pp 144–179Google Scholar
  76. Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252PubMedGoogle Scholar
  77. Wu G, Bazer FW, Davis TA, Jaeger LA, Johnson GA, Kim SW, Knabe DA, Meininger CJ, Spencer TE, Yin YL (2007) Important roles of the arginine family amino acids in swine nutrition and production. Livest Sci 112:8–22CrossRefGoogle Scholar
  78. Wu G, Bazer FW, Datta S, Johnson GA, Li P, Satterfield MC, Spencer TE (2008) Proline metabolism in the conceptus: Implications for fetal growth and development. Amino Acids. doi:10.1007/s00726-008-0052-7
  79. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492PubMedGoogle Scholar
  80. Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17PubMedGoogle Scholar
  81. Wu G, Thompson JR (1989) Methionine transamination and glutamine transaminases in skeletal muscle. Biochem J 262:690–691Google Scholar
  82. Yao K, Yin YL, Chu W, Liu Z, Deng D, Li T, Huang R, Zhang J, Tan B, Wang W, Wu G (2008) Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 138:867–872PubMedGoogle Scholar
  83. Yoo JH, Takeuchi T, Tagawa M, Seikai T (2000) Effect of thyroid hormones on the stage-specific pigmentation of the Japanese flounder Paralichthys olivaceus. Zool Sci 17:1101–1106PubMedCrossRefGoogle Scholar
  84. Zhang Y, Dabrowski K, Hliwa P, Gomulka P (2006) Indispensable amino acid concentrations decrease in tissues of stomachless fish, common carp in response to free amino acid- or peptide-based diets. Amino Acids 31:165–172PubMedCrossRefGoogle Scholar
  85. Zhou X (2005) Use of synthetic lysine in fish feeds: a review on research and application. Feed Ind 27:1–7Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Peng Li
    • 1
  • Kangsen Mai
    • 2
  • Jesse Trushenski
    • 3
  • Guoyao Wu
    • 1
  1. 1.Department of Animal ScienceTexas A&M UniversityCollege StationUSA
  2. 2.The Key Laboratory of Mariculture (Ministry of Education)Ocean University of ChinaQingdaoPeople’s Republic of China
  3. 3.Fisheries and Aquaculture CenterSouthern Illinois UniversityCarbondaleUSA

Personalised recommendations