Amino Acids

, 35:703

The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens

Review Article

Abstract

Collagens are among proteins that undergo several post-translational modifications, such as prolyl hydroxylation, that occur during elongation of the nascent chains in the endoplasmic reticulum. The major structural collagens, types I, II and III, have large, uninterrupted triple helices, comprising three polyproline II-like chains supercoiled around a common axis. The structure has a requirement for glycine, as every third residue, and is stabilized by the high content of proline and 4-hydroxyproline residues. Action of prolyl hydroxylases is critical. Spontaneous or targeted genetic defects in prolyl hydroxylases can be lethal or result in severe osteogenesis imperfecta. Prolines, as determinants of substrate specificity and susceptibility, also play a role in degradation of collagen by collagenolytic matrix metalloproteinases (MMPs). Targeted mutations in mice in the collagenase cleavage domain have profound effects on collagen turnover and the function of connective tissues. Prolines are thus critical determinants of collagen structure and function.

Keywords

Prolylhydroxylases Collagen structure Osteogenesis imperfecta Collagenases Matrix metalloproteinases 

References

  1. Ackerman MS, Bhate M, Shenoy N, Beck K, Ramshaw JA, Brodsky B. (1999) Sequence dependence of the folding of collagen-like peptides. Single amino acids affect the rate of triple-helix nucleation. J Biol Chem 274:7668–7673PubMedCrossRefGoogle Scholar
  2. Barnes AM, Chang W, Morello R, Cabral WA, Weis M, Eyre DR, Leikin S, Makareeva E, Kuznetsova N, Uveges TE, Ashok A, Flor AW, Mulvihill JJ, Wilson PL, Sundaram UT, Lee B, Marini JC (2006) Deficiency of cartilage-associated protein in recessive lethal osteogenesis imperfecta. N Engl J Med 355:2757–2764PubMedCrossRefGoogle Scholar
  3. Beare AHM, O’Kane S, Krane SM, Ferguson MWJ (2003) Severely impaired wound healing in the collagenase resistant mouse. J Invest Dermatol 120:153–163PubMedCrossRefGoogle Scholar
  4. Brown RA, Hukins DW, Weiss JB, Twose TM (1977) Do mammalian collagenase and DNA restriction endonucleases share a single mechanism for cleavage site recognition? Biochem Biophys Res Commun 74:1102–1108PubMedCrossRefGoogle Scholar
  5. Byers PH (2000) Osteogenesis imperfecta: perpectives and opportunities. Curr Opin Perdiatr 12:603–609CrossRefGoogle Scholar
  6. Cabral WA, Chang W, Barnes AM, Weis M, Scott MA, Leikin S, Makareeva E, Kuznetsova NV, Rosenbaum KN, Tifft CJ, Bulas DI, Kozma C, Smith PA, Eyre DR, Marini JC (2007) Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat Genet 39:359–365PubMedCrossRefGoogle Scholar
  7. Chiusaroli R, Maier A, Knight MC, Byrne M, Calvi LM, Baron R, Krane SM, Schipani E (2003) Collagenase cleavage of type I collagen is essential for both basal and parathyroid hormone (PTH)/PTH-related peptide receptor-induced osteoclast activation and has differential effects on discrete bone compartments. Endocrinology 144:4106–4116PubMedCrossRefGoogle Scholar
  8. Chung L, Dinakarpandian D, Yoshida N, Lauer-Fields JL, Fields GB, Visse R, Nagase H (2004) Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis. EMBO J 23:3020–3030PubMedCrossRefGoogle Scholar
  9. DiLullo GA, Sweeney SM, Körkkö J, Ala-Kokko L, SanAntonio JD (2002) Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 277:4223–4231CrossRefGoogle Scholar
  10. Fields GB, Van Wart HE, Birkedal-Hansen H (1987) Sequence specificity of human skin fibroblast collagenase. Evidence for the role of collagen structure in determining the collagenase cleavage site. J Biol Chem 262:6221–6226PubMedGoogle Scholar
  11. Fischer E (1902) Über eine neue Aminosäure aus Leim. Chem Berichte 35:2660–2665Google Scholar
  12. Fukumoto Y, Deguchi JO, Libby P, Rabkin-Aikawa E, Sakata Y, Chin MT, Hill CC, Lawler PR, Varo N, Schoen FJ, Krane SM, Aikawa M (2004) Genetically determined resistance to collagenase action augments interstitial collagen accumulation in atherosclerotic plaques. Circulation 110:1953–1959PubMedCrossRefGoogle Scholar
  13. Inoue K, Mikuni-Takagaki Y, Oikawa K, Itoh T, Inada M, Noguchi T, Park J-S, OnoderaT, Krane SM, Noda M, Itohara S (2006) A crucial role for Mmp-2 in osteocytic canalicular formation and bone metabolism. J Biol Chem 281:33813–33824Google Scholar
  14. Irreverre F, Morita K, Robertson AV, Witkop B (1962) Isolation and synthesis of 3-hydroxy-L-proline. Biochem Biophys Res Commun 8:453–455CrossRefGoogle Scholar
  15. Issa R, Zhou X, Trim N, Millward-Sadler H, Krane S, Benyon C, Iredale J (2003) Mutation in collagen-1 that confers resistance to the action of collagenase results in failure of recovery from CCl4-induced liver fibrosis, persistence of activated hepatic stellate cells, and diminished hepatocyte regeneration. FASEB J 17:47–49PubMedGoogle Scholar
  16. Jenkins CL, Bretscher LE, Guzei IA, Raines RT (2003) Effect of 3-hydroxyproline residues on collagen stability. J Am Chem Soc 125:6422–6427PubMedCrossRefGoogle Scholar
  17. Josse J, Harrington W (1964) Role of pyrrolidine residues in the structure and stabilization of collagen. J Mol Biol 9:269–287PubMedCrossRefGoogle Scholar
  18. Jung J-C, West-Mays JA, Stramer BM, Byrne MH, Scott S, Mody MK, Sadow PM, Krane SM, Fini ME (2004) Studies on activity and expression of xenopus laevis matrix metalloproteinases: identification of a novel role for the hormone prolactin in regulating collagenolysis in both amphibians and mammals. J Cell Physiol 201:155–164PubMedCrossRefGoogle Scholar
  19. Kaelin WG Jr (2005) Proline hydroxylation and gene expression. Annu Rev Biochem 74:115–128PubMedCrossRefGoogle Scholar
  20. Kar K, Amin P, Bryan MA, Persikov AV, Mohs A, Wang Y-H, Brodsky B (2006) Self-association of collagen triple-helical peptides into higher order structures. J Biol Chem 80:33282–33290Google Scholar
  21. Khoshnoodi J, Cartailler J-P, Alvares K, Veis A, Hudson BG (2006) Molecular recognition in the assembly of collagens: terminal noncollagenous domains are key recognition modules in the formation of triple helical protomers. J Biol Chem 281:38117–38121PubMedCrossRefGoogle Scholar
  22. Krane SM (2006) Mutations in genes encoding components of a post-translational-modifying protein cause another collagen disease. BoneKEy-Osteovision 3(11):10–13Google Scholar
  23. Lauer-Fields JL, Tuzinski KA, Shimokawa K, Nagase H, Fields GB (2000) Hydrolysis of triple-helical collagen peptide models by matrix metaloproteinases. J Biol Chem 275:13282–13290PubMedCrossRefGoogle Scholar
  24. Lauer-Fields JL, Broder T, Sritharan T, Chung L, Nagase H, Fields GB (2001) Kinetic analysis of matrix metalloproteinase activity using fluorogenic triple-helical substrates. Biochemistry 40:5795–5803PubMedCrossRefGoogle Scholar
  25. Liu X, Wu H, Byrne M, Jeffrey J, Krane S, Jaenisch R (1995) A targeted mutation at the known collagenase cleavage site in mouse type I collagen impairs tissue remodeling. J Cell Biol 130:227–237PubMedCrossRefGoogle Scholar
  26. Marini JC, Cabral WA, Barnes AM, Chang W (2007a) Components of the collagen prolyl 3-hydroxylation complex are crucial for normal bone development. Cell Cycle 6:1675–1681PubMedGoogle Scholar
  27. Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD, Milgrom S, Hyland JC, Korkko J, Prockop DJ, De Paepe A, Coucke P, Symoens S, Glorieux FH, Roughley PJ, Lund AM, Kuurila-Svahn K, Hartikka H, Cohn DH, Krakow D, Mottes M, Schwarze U, Chen D, Yang K, Kuslich C, Troendle J, Dalgleish R, Byers PH (2007b) Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat 28:209–221PubMedCrossRefGoogle Scholar
  28. Morello R, Tonachini L, Monticone M, Viggiano L, Rocchi M, Cancedda R, Castagnola P (1999) cDNA cloning, characterization and chromosome mapping of Crtap encoding the mouse cartilage associated protein. Matrix Biol 18:319–324PubMedCrossRefGoogle Scholar
  29. Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone M, Castagnola P, Rauch F, Glorieux FH, Vranka J, Bächinger HP, Pace JM, Schwarze U, Byers PH, Weis M, Fernandes RJ, Eyre DR, Yao Z, Boyce BF, Lee B (2006) CRTAP is required for prolyl 3- hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127:291–304PubMedCrossRefGoogle Scholar
  30. Myllyharju J, Kivirikko KI (2004) Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet 20:33–43PubMedCrossRefGoogle Scholar
  31. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494PubMedCrossRefGoogle Scholar
  32. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Res 69:562–573CrossRefGoogle Scholar
  33. Ogle JD, Arlinghaus RB, Logan MA (1962) 3-Hydroxyproline, a new amino acid of collagen. J Biol Chem 237:3667–3673PubMedGoogle Scholar
  34. Piez KA (1984) Molecular and aggregate structures of the collagens. In: Piez KA, Reddi AH (eds) Extracellular matrix biochemistry. Elsevier, New York, pp 1–39Google Scholar
  35. Pilcher BK, Dumin JA, Sudbeck BD, Krane SM, Welgus HG, Parks WC (1997) The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J Cell Biol 137:1445–1457PubMedCrossRefGoogle Scholar
  36. Puentes XS, López-Otín C (2004) A genomic analysis of rat proteases and protease inhibitors. Genome Res 14:609–622CrossRefGoogle Scholar
  37. Schumacher MA, Mizuno K, Bächinger HP (2006) The crystal structure of a collagen-like polypeptide with 3(S)-hydroxyproline residues in the Xaa position forms a standard 7/2 collagen triple helix. J Biol Chem 281:27566–27574PubMedCrossRefGoogle Scholar
  38. Stamenkovic I (2003) Extracellular matrix remodelling: The role of matrix metalloproteinases. J Pathol 200:448–464PubMedCrossRefGoogle Scholar
  39. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516PubMedCrossRefGoogle Scholar
  40. Stetten MR, Schoenheimer R (1944) The metabolism of l(-) proline studied with the aid of deuterium and isotopic nitrogen. J Biol Chem 153:113–132Google Scholar
  41. Tonachini L, Morello R, Monticone M, Skaug J, Scherer SW, Cancedda R, Castagnola P (1999) cDNA cloning, characterization and chromosome mapping of the gene encoding human cartilage associated protein (CRTAP) Cytogenet Cell Genet 87:191–194CrossRefGoogle Scholar
  42. van Bezooijen RL, Roelen B A, Visser A, van der Wee-Pals L, de Wilt E, Karperien M, Hamersma H, Papapoulos SE, ten Dijke P, Lowik CW (2004) Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med 199:805–814PubMedCrossRefGoogle Scholar
  43. Vranka JA, Sakai LY, Bächinger HP (2004) Prolyl 3-hydroxylase 1, enzyme characterization and identification of a novel family of enzymes. J Biol Chem 279:23615–23621PubMedCrossRefGoogle Scholar
  44. Vu TH, Werb Z (2000) Matrix metalloproteinases:effectors in development and normal physiology. Genes Dev 14:2123–2133PubMedCrossRefGoogle Scholar
  45. Ward LM, Rauch F, Travers R, Chabot G, Azouz EM, Lalic L, Roughley PJ, Glorieux FH (2002) Osteogenesis imperfecta type VII: an autosomal recessive form of brittle bone disease. Bone 31:12–18PubMedCrossRefGoogle Scholar
  46. Wassenhove-McCarthy DJ, McCarthy KJ (1999) Molecular characterization of a novel basement membrane associated proteoglycan, leprecan. J Biol Chem 274:25004–25017PubMedCrossRefGoogle Scholar
  47. Wu H, Byrne MH, Stacey A, Goldring MB, Birkhead JR, Jaenisch R, Krane SM (1990) Generation of collagenase-resistant collagen by site-directed mutagenesis of murine proα1(I) collagen gene. Proc Natl Acad Sci USA 87:5888–5892PubMedCrossRefGoogle Scholar
  48. Zhao W, Byrne MH, Boyce BF, Krane SM (1999) Bone resorption induced by parathyroid hormone is strikingly diminished in collagenase-resistant mutant mice. J Clin Invest 103:517–524PubMedCrossRefGoogle Scholar
  49. Zhao W, Byrne MH, Wang Y, Krane SM (2000) Inability of collagenase to cleave type I collagen in vivo is associated with osteocyte and osteoblast apoptosis and excessive bone deposition. J Clin Invest 106:941–949PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Medicine, Harvard Medical School and the Massachusetts General HospitalCenter for Immunology and Inflammatory DiseasesBostonUSA

Personalised recommendations